Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mycologia ; 113(3): 513-524, 2021.
Article in English | MEDLINE | ID: mdl-33764859

ABSTRACT

The selection of fast-growing and high-yield-producing strains is required to satisfy the market demand on fungal food supplements. To that aim, three strains deposited in our collection as G. lucidum and G. oregonense were screened for polysaccharide production and biomass yield. Ganoderma strains deposited as G. lucidum were identified as G. sessile and G. lingzhi by nuc rDNA internal transcribed spacer ITS1-5.8S-ITS2 (ITS) and translation elongation factor 1-α (TEF1-α) phylogenies. The identity of G. oregonense was confirmed by molecular phylogeny and biogeography. Additionally, mycelial antagonism confirmed species differentiation, and strains were further distinguished by morphology and protein profiles. Biomass and polysaccharide yields of G. sessile were clearly different from those of G. lingzhi and G. oregonense in both liquid culture and solid-state fermentation. The maximum polysaccharide yield (4.52 ± 0.83 g L-1) for G. sessile was obtained from submerged cultures at day 9. G. sessile also achieved the highest linear growth in lignocellulosic solid substrates. Consequently, basidiomata were successfully obtained by solid-state fermentation in polypropylene bags, whereas G. lingzhi and G. oregonense mushrooms were not produced in artificial solid substrates. G. sessile, a species frequently collected in America, showed to be a promising polysaccharide producer for the manufacture of dietary supplements.


Subject(s)
Ganoderma , Reishi , Fermentation , Ganoderma/genetics , Polysaccharides
2.
Mol Biol Rep ; 46(2): 2427-2445, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30798485

ABSTRACT

Understanding the genetic basis of cold tolerance is a key step towards obtaining new and improved crop varieties. Current geographical distribution of durum wheat in Argentina exposes the plants to frost damage when spikes have already emerged. Biochemical pathways involved in cold tolerance are known to be early activated at above freezing temperatures. In this study we reported the transcriptome of CBW0101 spring durum wheat by merging data from untreated control and cold (5 °C) treated plant samples at reproductive stage. A total of 128,804 unigenes were predicted. Near 62% of the unigenes were annotated in at least one database. In total 876 unigenes were differentially expressed (DEGs), 562 were up-regulated and 314 down-regulated in treated samples. DEGs are involved in many critical processes including, photosynthetic activity, lipid and carbohydrate synthesis and accumulation of amino acids and seed proteins. Twenty-eight transcription factors (TFs) belonging to 14 families resulted differentially expressed from which eight families comprised of only TFs induced by cold. We also found 31 differentially expressed Long non-coding RNAs (lncRNAs), most of them up-regulated in treated plants. Two of these lncRNAs could operate via microRNAs (miRNAs) target mimic. Our results suggest a reprogramming of expression patterns in CBW0101 that affects a number of genes that is closer to the number reported in winter genotypes. These observations could partially explain its moderate tolerance (low proportion of frost-damaged spikes) when exposed to freezing days in the field.


Subject(s)
Cold-Shock Response/genetics , Triticum/genetics , Triticum/metabolism , Argentina , Cold Temperature , Cold-Shock Response/physiology , Freezing , Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Genotype , MicroRNAs/genetics , RNA, Long Noncoding/metabolism , Transcription Factors/genetics , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...