Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Nano Lett ; 23(24): 11447-11452, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-37982385

ABSTRACT

The photonic spin Hall effect, referring to the spatial separation of photons with opposite spins due to spin-orbit interactions, has enabled potential for various spin-sensitive applications and devices. Here, using scattering-type near-field scanning optical microscopy, we observe spin-orbit interactions introduced by a subwavelength semiring antenna integrated in a plasmonic circuit. Clear evidence of unidirectional excitation of surface plasmon polaritons is obtained by direct comparison of the amplitude- and phase-resolved near-field maps of the plasmonic nanocircuit under excitation with photons of opposite spin states coupled to a plasmonic nanoantenna. We present details of the antenna design and experimental methods to investigate the spatial variation of complex electromagnetic fields in a spin-sensitive plasmonic circuit. The reported findings offer valuable insights into the generation, characterization, and application of the photonic spin Hall effect in photonic integrated circuits for future and emerging spin-selective nanophotonic systems.

2.
Light Sci Appl ; 12(1): 189, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37528100

ABSTRACT

Photonic Random-Access Memories (P-RAM) are an essential component for the on-chip non-von Neumann photonic computing by eliminating optoelectronic conversion losses in data links. Emerging Phase-Change Materials (PCMs) have been showed multilevel memory capability, but demonstrations still yield relatively high optical loss and require cumbersome WRITE-ERASE approaches increasing power consumption and system package challenges. Here we demonstrate a multistate electrically programmed low-loss nonvolatile photonic memory based on a broadband transparent phase-change material (Ge2Sb2Se5, GSSe) with ultralow absorption in the amorphous state. A zero-static-power and electrically programmed multi-bit P-RAM is demonstrated on a silicon-on-insulator platform, featuring efficient amplitude modulation up to 0.2 dB/µm and an ultralow insertion loss of total 0.12 dB for a 4-bit memory showing a 100× improved signal to loss ratio compared to other phase-change-materials based photonic memories. We further optimize the positioning of dual microheaters validating performance tradeoffs. Experimentally we demonstrate a half-a-million cyclability test showcasing the robust approach of this material and device. Low-loss photonic retention-of-state adds a key feature for photonic functional and programmable circuits impacting many applications including neural networks, LiDAR, and sensors for example.

3.
Nanomaterials (Basel) ; 13(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37513117

ABSTRACT

Metalenses are emerging as an alternative to digital micromirror devices (DMDs), with the advantages of compactness and flexibility. The exploration of metalenses has ignited enthusiasm among optical engineers, positioning them as the forthcoming frontier in technology. In this paper, we advocate for the implementation of the phase-change material, Sb2Se3, capable of providing swift, reversible, non-volatile focusing and defocusing within the 1550 nm telecom spectrum. The lens, equipped with a robust ITO microheater, offers unparalleled functionality and constitutes a significant step toward dynamic metalenses that can be integrated with beamforming applications. After a meticulously conducted microfabrication process, we showcase a device capable of rapid tuning (0.1 MHz level) for metalens focusing and defocusing at C band communication, achieved by alternating the PCM state between the amorphous and crystalline states. The findings from the experiment show that the device has a high contrast ratio for switching of 28.7 dB.

4.
Nanomaterials (Basel) ; 13(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37446489

ABSTRACT

Van der Waals (vdWs) heterostructures, assembled by stacking of two-dimensional (2D) crystal layers, have emerged as a promising new material system for high-performance optoelectronic applications, such as thin film transistors, photodetectors, and light-emitters. In this study, we showcase an innovative device that leverages strain-tuning capabilities, utilizing a MoS2/Sb2Te3 vdWs p-n heterojunction architecture designed explicitly for photodetection across the visible to near-infrared spectrum. These heterojunction devices provide ultra-low dark currents as small as 4.3 pA, a robust photoresponsivity of 0.12 A W-1, and reasonable response times characterized by rising and falling durations of 0.197 s and 0.138 s, respectively. These novel devices exhibit remarkable tunability under the application of compressive strain up to 0.3%. The introduction of strain at the heterojunction interface influences the bandgap of the materials, resulting in a significant alteration of the heterojunction's band structure. This subsequently shifts the detector's optical absorption properties. The proposed strategy of strain-induced engineering of the stacked 2D crystal materials allows the tuning of the electronic and optical properties of the device. Such a technique enables fine-tuning of the optoelectronic performance of vdWs devices, paving the way for tunable high-performance, low-power consumption applications. This development also holds significant potential for applications in wearable sensor technology and flexible electro-optic circuits.

5.
ACS Nano ; 16(4): 4989-5035, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35318848

ABSTRACT

There is increasing interest in the study of chiral degrees of freedom occurring in matter and in electromagnetic fields. Opportunities in quantum sciences will likely exploit two main areas that are the focus of this Review: (1) recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials and (2) rapidly evolving nanophotonic strategies designed to amplify chiral light-matter interactions. On the one hand, the CISS effect underpins the observation that charge transport through nanoscopic chiral structures favors a particular electronic spin orientation, resulting in large room-temperature spin polarizations. Observations of the CISS effect suggest opportunities for spin control and for the design and fabrication of room-temperature quantum devices from the bottom up, with atomic-scale precision and molecular modularity. On the other hand, chiral-optical effects that depend on both spin- and orbital-angular momentum of photons could offer key advantages in all-optical and quantum information technologies. In particular, amplification of these chiral light-matter interactions using rationally designed plasmonic and dielectric nanomaterials provide approaches to manipulate light intensity, polarization, and phase in confined nanoscale geometries. Any technology that relies on optimal charge transport, or optical control and readout, including quantum devices for logic, sensing, and storage, may benefit from chiral quantum properties. These properties can be theoretically and experimentally investigated from a quantum information perspective, which has not yet been fully developed. There are uncharted implications for the quantum sciences once chiral couplings can be engineered to control the storage, transduction, and manipulation of quantum information. This forward-looking Review provides a survey of the experimental and theoretical fundamentals of chiral-influenced quantum effects and presents a vision for their possible future roles in enabling room-temperature quantum technologies.

6.
Research (Wash D C) ; 2021: 9780760, 2021.
Article in English | MEDLINE | ID: mdl-34870226

ABSTRACT

While information is ubiquitously generated, shared, and analyzed in a modern-day life, there is still some controversy around the ways to assess the amount and quality of information inside a noisy optical channel. A number of theoretical approaches based on, e.g., conditional Shannon entropy and Fisher information have been developed, along with some experimental validations. Some of these approaches are limited to a certain alphabet, while others tend to fall short when considering optical beams with a nontrivial structure, such as Hermite-Gauss, Laguerre-Gauss, and other modes with a nontrivial structure. Here, we propose a new definition of the classical Shannon information via the Wigner distribution function, while respecting the Heisenberg inequality. Following this definition, we calculate the amount of information in Gaussian, Hermite-Gaussian, and Laguerre-Gaussian laser modes in juxtaposition and experimentally validate it by reconstruction of the Wigner distribution function from the intensity distribution of structured laser beams. We experimentally demonstrate the technique that allows to infer field structure of the laser beams in singular optics to assess the amount of contained information. Given the generality, this approach of defining information via analyzing the beam complexity is applicable to laser modes of any topology that can be described by well-behaved functions. Classical Shannon information, defined in this way, is detached from a particular alphabet, i.e., communication scheme, and scales with the structural complexity of the system. Such a synergy between the Wigner distribution function encompassing the information in both real and reciprocal space and information being a measure of disorder can contribute into future coherent detection algorithms and remote sensing.

7.
Sci Rep ; 11(1): 5776, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33707639

ABSTRACT

Mirror symmetry is an abundant feature in both nature and technology. Its successful detection is critical for perception procedures based on visual stimuli and requires organizational processes. Neuromorphic computing, utilizing brain-mimicked networks, could be a technology-solution providing such perceptual organization functionality, and furthermore has made tremendous advances in computing efficiency by applying a spiking model of information. Spiking models inherently maximize efficiency in noisy environments by placing the energy of the signal in a minimal time. However, many neuromorphic computing models ignore time delay between nodes, choosing instead to approximate connections between neurons as instantaneous weighting. With this assumption, many complex time interactions of spiking neurons are lost. Here, we show that the coincidence detection property of a spiking-based feed-forward neural network enables mirror symmetry. Testing this algorithm exemplary on geospatial satellite image data sets reveals how symmetry density enables automated recognition of man-made structures over vegetation. We further demonstrate that the addition of noise improves feature detectability of an image through coincidence point generation. The ability to obtain mirror symmetry from spiking neural networks can be a powerful tool for applications in image-based rendering, computer graphics, robotics, photo interpretation, image retrieval, video analysis and annotation, multi-media and may help accelerating the brain-machine interconnection. More importantly it enables a technology pathway in bridging the gap between the low-level incoming sensor stimuli and high-level interpretation of these inputs as recognized objects and scenes in the world.

8.
Sci Rep ; 11(1): 1287, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33446735

ABSTRACT

Densely integrated active photonics is key for next generation on-chip networks for addressing both footprint and energy budget concerns. However, the weak light-matter interaction in traditional active Silicon optoelectronics mandates rather sizable device lengths. The ideal active material choice should avail high index modulation while being easily integrated into Silicon photonics platforms. Indium tin oxide (ITO) offers such functionalities and has shown promising modulation capacity recently. Interestingly, the nanometer-thin unity-strong index modulation of ITO synergistically combines the high group-index in hybrid plasmonic with nanoscale optical modes. Following this design paradigm, here, we demonstrate a spectrally broadband, GHz-fast Mach-Zehnder interferometric modulator, exhibiting a high efficiency signified by a miniscule VπL of 95 V µm, deploying a one-micrometer compact electrostatically tunable plasmonic phase-shifter, based on heterogeneously integrated ITO thin films into silicon photonics. Furthermore we show, that this device paradigm enables spectrally broadband operation across the entire telecommunication near infrared C-band. Such sub-wavelength short efficient and fast modulators monolithically integrated into Silicon platform open up new possibilities for high-density photonic circuitry, which is critical for high interconnect density of photonic neural networks or applications in GHz-fast optical phased-arrays, for example.

9.
Science ; 370(6516): 600-604, 2020 10 30.
Article in English | MEDLINE | ID: mdl-33033158

ABSTRACT

Topological photonics in strongly coupled light-matter systems offer the possibility for fabricating tunable optical devices that are robust against disorder and defects. Topological polaritons, i.e., hybrid exciton-photon quasiparticles, have been proposed to demonstrate scatter-free chiral propagation, but their experimental realization to date has been at deep cryogenic temperatures and under strong magnetic fields. We demonstrate helical topological polaritons up to 200 kelvin without external magnetic field in monolayer WS2 excitons coupled to a nontrivial photonic crystal protected by pseudo time-reversal symmetry. The helical nature of the topological polaritons, where polaritons with opposite helicities are transported to opposite directions, is verified. Topological helical polaritons provide a platform for developing robust and tunable polaritonic spintronic devices for classical and quantum information-processing applications.

10.
Opt Express ; 28(15): 21474-21480, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32752424

ABSTRACT

We design a multi-layered solar spectral splitting planar concentrator for near infrared (NIR) light energy harvesting application. Each layer includes a silicon nitride based subwavelength diffraction grating on top of a glass substrate that is optimized to diffract the incoming solar radiation in a specific band from a broad spectral band (700-1400 nm in the NIR region) into guided modes propagating inside the glass substrate. The steep diffraction angle due to subwavelength grating results in concentrated light at the edge of each layer where it is then converted to electricity using a photovoltaic cell. The spectral splitting planar concentrator shows an overall NIR guiding efficiency of ∼18%, and power conversion efficiency of ∼11%. The design can be potentially used for building integrated photovoltaics application.

11.
ACS Nano ; 14(8): 9502-9511, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32559065

ABSTRACT

The replacement of plastic with eco-friendly and biodegradable materials is one of the most stringent environmental challenges. In this respect, cellulose stands out as a biodegradable polymer. However, a significant challenge is to obtain biodegradable materials for high-end photonics that are robust in humid environments. Here, we demonstrate the fabrication of high-quality micro- and nanoscale photonic and plasmonic structures via replica molding using pure cellulose and a blended version with nonedible agro-wastes. Both materials are biodegradable in soil and seawater according to the ISO 17556 standard. The pure cellulose films are transparent in the vis-NIR spectrum, having a refractive index similar to glass. The microstructured photonic crystals show high-quality diffractive properties that are maintained under extended exposure to water. Nanostructuring the cellulose transforms it to a biodegradable metasurface manifesting bright structural colors. A subsequent deposition of Ag endowed the metasurface with plasmonic properties used to produce plasmonic colors and for surface-enhanced Raman scattering.


Subject(s)
Cellulose , Optics and Photonics , Glass , Photons , Spectrum Analysis, Raman
12.
Sci Rep ; 10(1): 6482, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32300139

ABSTRACT

Continuing demands for increased computing efficiency and communication bandwidth have pushed the current semiconductor technology to its limit. This led to novel technologies with the potential to outperform conventional electronic solutions such as photonic pre-processors or accelerators, electronic-photonic hybrid circuits, and neural networks. However, the efforts made to describe and predict the performance evolution of compute-performance fall short to accurately predict and thereby explain the actually observed development pace with time; that is all proposed metrics eventually deviate from their development trajectory after several years from when they were originally proposed. This discrepancy demands a figure-of-merit that includes a holistic set of driving forces of the compute-system evolution. Here we introduce the Capability-to-Latency-Energy-Amount-Resistance (CLEAR) metric encompassing synchronizing speed, energy efficiency, physical machine size scaling, and economic cost. We show that CLEAR is the only metric to accurately describe the historical compute-system development. We find that even across different technology options CLEAR matches the observed (post-diction) constant rate-of-growth, and also fits proposed future compute-system (prediction). Therefore, we propose CLEAR to serve as a guide to quantitatively predict required compute-system demands at a given time in the future.

13.
Nano Lett ; 20(1): 790-798, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31846342

ABSTRACT

Two-dimensional semiconductors host excitons with very large oscillator strengths and binding energies due to significantly reduced carrier screening. Two-dimensional semiconductors integrated with optical cavities are emerging as a promising platform for studying strong light-matter interactions as a route to explore a variety of exotic many-body effects. Here, in few-layered WS2 coupled with plasmonic nanoparticle lattices, we observe the formation of a collective polaritonic mode near the exciton energy and the formation of a complete polariton band gap with energy scale comparable to the exciton-plasmon coupling strength. A coupled oscillator model reveals that the collective mode arises from the cooperative coupling of the excitons to the plasmonic lattice diffraction orders via exciton-exciton interactions, leading to ultrastrong coupling. The emergence of the collective mode is accompanied by a superlinear increase of the polariton mode splitting as a function of the square root of the exciton oscillator strength. The presence of these many body effects, which are enhanced in systems which lack bulk polarization, not only allows the formation of a collective mode with periodically varying field profiles, but also further enhances the exciton-plasmon coupling. By integrating the hybrid WS2-plasmonic lattice device with a field-effect transistor, we demonstrate active tuning of the collective mode and the polariton band gap. We also report electrically tunable waveguiding in the polariton band gap region through a line defect, which can be turned off with gate bias that can extinguish the collective mode and the polariton band gap. These systems provide new opportunities for obtaining a deeper and systematic understanding of many body cooperative phenomena in two-dimensional materials coupled with periodic photonic systems and for designing more complex and actively controllable polaritonic devices including switchable polariton lasers, waveguides, and optical logical elements.

14.
Sci Rep ; 9(1): 11279, 2019 Aug 02.
Article in English | MEDLINE | ID: mdl-31375787

ABSTRACT

The class of transparent conductive oxides includes the material indium tin oxide (ITO) and has become a widely used material of modern every-day life such as in touch screens of smart phones and watches, but also used as an optically transparent low electrically-resistive contract in the photovoltaics industry. More recently ITO has shown epsilon-near-zero (ENZ) behavior in the telecommunication frequency band enabling both strong index modulation and other optically-exotic applications such as metatronics. However, the ability to precisely obtain targeted electrical and optical material properties in ITO is still challenging due to complex intrinsic effects in ITO and as such no integrated metatronic platform has been demonstrated to-date. Here we deliver an extensive and accurate description process parameter of RF-sputtering, showing a holistic control of the quality of ITO thin films in the visible and particularly near-infrared spectral region. We are able to custom-engineer the ENZ point across the telecommunication band by explicitly controlling the sputtering process conditions. Exploiting this control, we design a functional sub-wavelength-scale filter based on lumped circuit-elements, towards the realization of integrated metatronic devices and circuits.

15.
Sci Rep ; 9(1): 11723, 2019 Aug 13.
Article in English | MEDLINE | ID: mdl-31409804

ABSTRACT

Energy consumption of buildings is increasing at a rapid pace due to urbanization, while net-zero energy buildings offer a green and sustainable solution. However, limited rooftop availability on multi-story buildings poses a challenge for large-scale integration of photovoltaics. Conventional silicon solar panels block visible light making them unfeasible to cover all the surfaces of a building. Here, we demonstrate a novel dielectric grating based planar light concentrator. We integrate this functional device onto a window glass transmitting visible light while simultaneously guiding near infrared (NIR) portion of sunlight to edges of the glass window where it is converted to electricity by a photovoltaic cell. Gratings are designed to guide NIR region and realize polarization independent performance. Experimentally, we observe 0.72% optical guiding efficiency in the NIR region (700-1000 nm), transmitting majority of the visible portion for natural room lighting. Integrating solar cell at the window edge, we find an electrical conversion efficiency of about 0.65% of NIR light with a 25 mm2 prototype. Major losses are coupling and guiding losses arising from non-uniformity in fabrication over a large area. Such a functional window combining energy generation, natural room lighting and heat load reduction could mitigate urban heat island effect in modern cities.

16.
Opt Express ; 27(4): 5181-5191, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-30876120

ABSTRACT

Photonic neural networks benefit from both the high-channel capacity and the wave nature of light acting as an effective weighting mechanism through linear optics. Incorporating a nonlinear activation function by using active integrated photonic components allows neural networks with multiple layers to be built monolithically, eliminating the need for energy and latency costs due to external conversion. Interferometer-based modulators, while popular in communications, have been shown to require more area than absorption-based modulators, resulting in a reduced neural network density. Here, we develop a model for absorption modulators in an electro-optic fully connected neural network, including noise, and compare the network's performance with the activation functions produced intrinsically by five types of absorption modulators. Our results show the quantum well absorption modulator-based electro-optic neuron has the best performance allowing for 96% prediction accuracy with 1.7×10-12 J/MAC excluding laser power when performing MNIST classification in a 2 hidden layer feed-forward photonic neural network.

17.
Opt Express ; 26(12): 15445-15470, 2018 Jun 11.
Article in English | MEDLINE | ID: mdl-30114806

ABSTRACT

Electro-optic modulators perform a key function for data processing and communication. Rapid growth in data volume and increasing bits per second rates demand increased transmitter and thus modulator performance. Recent years have seen the introduction of new materials and modulator designs to include polaritonic optical modes aimed at achieving advanced performance in terms of speed, energy efficiency, and footprint. Such ad hoc modulator designs, however, leave a universal design for these novel material classes of devices missing. Here we execute a holistic performance analysis for waveguide-based electro-absorption modulators and use the performance metric switching energy per unit bandwidth (speed). We show that the performance is fundamentally determined by the ratio of the differential absorption cross-section of the switching material's broadening and the waveguide effective mode area. We find that the former shows highest performance for a broad class of materials relying on Pauli-blocking (absorption saturation), such as semiconductor quantum wells, quantum dots, graphene, and other 2D materials, but is quite similar amongst these classes. In this respect these materials are clearly superior to those relying on free carrier absorption, such as Si and ITO. The performance improvement on the material side is fundamentally limited by the oscillator sum rule and thermal broadening of the Fermi-Dirac distribution. We also find that performance scales with modal waveguide confinement. Thus, we find highest energy-bandwidth-ratio modulator designs to be graphene, QD, QW, or 2D material-based plasmonic slot waveguides where the electric field is in-plane with the switching material dimension. We show that this improvement always comes at the expense of increased insertion loss. Incorporating fundamental device physics, design trade-offs, and resulting performance, this analysis aims to guide future experimental modulator explorations.

18.
Appl Opt ; 57(18): D130-D140, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-30117932

ABSTRACT

Electro-optic modulation is a technology-relevant function for signal keying, beam steering, or neuromorphic computing through providing the nonlinear activation function of a perceptron. With silicon-based modulators being bulky and inefficient, here we discuss graphene-based devices heterogeneously integrated. This study provides a critical and encompassing discussion of the physics and performance of graphene. We provide a holistic analysis of the underlying physics of modulators including graphene's index tunability, the underlying optical mode, and discuss resulting performance vectors for this novel class of hybrid modulators. Our results show that reducing the modal area and reducing the effective broadening of the active material are key to improving device performance defined by the ratio of energy-bandwidth and footprint. We further show how the waveguide's polarization must be in-plane with graphene, such as given by plasmonic-slot structures, for performance improvements. A high device performance can be obtained by introducing multi- or bi-layer graphene modulator designs. Lastly, we present recent results of a graphene-based hybrid-photon-plasmon modulator on a silicon platform and discuss electron beam lithography treatments for transferred graphene for the relevant Fermi level tuning. Being physically compact, this 100 aJ/bit modulator opens the path towards a novel class of attojoule efficient opto-electronics.

19.
Opt Lett ; 43(9): 2026-2029, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29714737

ABSTRACT

The residue number system (RNS) enables dimensionality reduction of an arithmetic problem by representing a large number as a set of smaller integers, where the number is decomposed by prime number factorization. These reduced problem sets can then be processed independently and in parallel, thus improving computational efficiency and speed. Here, we show an optical RNS hardware representation based on integrated nanophotonics. The digit-wise shifting in RNS arithmetic is expressed as spatial routing of an optical signal in 2×2 hybrid photonic-plasmonic switches. Here, the residue is represented by spatially shifting the input waveguides relative to the routers' outputs, where the moduli are represented by the number of waveguides. By cascading the photonic 2×2 switches, we design a photonic RNS adder and a multiplier forming an all-to-all sparse directional network. The advantage of this photonic arithmetic processor is the short (10's ps) computational execution time given by the optical propagation delay through the integrated nanophotonic router. Furthermore, we show how photonic processing in-the-network leverages the natural parallelism of optics such as wavelength-division-multiplexing in this RNS processor. A key application for such a photonic RNS engine is the functional analysis of convolutional neural networks.

20.
Opt Express ; 26(7): 8252-8259, 2018 Apr 02.
Article in English | MEDLINE | ID: mdl-29715794

ABSTRACT

While augmenting network on chips (NoC) with photonic links enables high-bandwidth communication, the overhead for photonics is rather large, mainly driven by bulky footprints and the multi-functionality of transceivers. The latter requires, in addition to a photon source, signal modulation and detection. If the NoC were photonically augmented at every network point to enable all-to-all connectivity, the resulting photonic overhead would be excessive. Besides, the high bandwidth of a single optical bus may be sufficient to supply the data-sharing demand of a network. Spatial signal routing is a necessary function of data communication in NoCs. However, if photonic links are used to augment electronics, an energy-costly optical-electrical-optical (OEO) conversion is required since routing is currently executed in the electronic domain. Here we show a novel integrated broadband hybrid photonic-plasmonic device termed an MO detector featuring dual light modulation and detection. With 10 dB extinction ratio and 0.8 dB insertion loss at the modulation state and 0.7 A/W responsivity at the detection state based on the finite-different time-domain simulation, this transceiver-like device (i) eliminates the OEO conversion, (ii) reduces optical losses from photodetectors via bypassing the photodetector when not needed, and (iii) enables cognitive routing strategies for network-on-chips. As such, the MO detector acts as a micrometer-compact transceiver for next-generation NoCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...