Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters











Publication year range
1.
Cells ; 12(15)2023 07 26.
Article in English | MEDLINE | ID: mdl-37566018

ABSTRACT

SARS-CoV-2 infection triggers distinct patterns of disease development characterized by significant alterations in host regulatory responses. Severe cases exhibit profound lung inflammation and systemic repercussions. Remarkably, critically ill patients display a "lipid storm", influencing the inflammatory process and tissue damage. Sphingolipids (SLs) play pivotal roles in various cellular and tissue processes, including inflammation, metabolic disorders, and cancer. In this study, we employed high-resolution mass spectrometry to investigate SL metabolism in plasma samples obtained from control subjects (n = 55), COVID-19 patients (n = 204), and convalescent individuals (n = 77). These data were correlated with inflammatory parameters associated with the clinical severity of COVID-19. Additionally, we utilized RNAseq analysis to examine the gene expression of enzymes involved in the SL pathway. Our analysis revealed the presence of thirty-eight SL species from seven families in the plasma of study participants. The most profound alterations in the SL species profile were observed in patients with severe disease. Notably, a predominant sphingomyelin (SM d18:1) species emerged as a potential biomarker for COVID-19 severity, showing decreased levels in the plasma of convalescent individuals. Elevated SM levels were positively correlated with age, hospitalization duration, clinical score, and neutrophil count, as well as the production of IL-6 and IL-8. Intriguingly, we identified a putative protective effect against disease severity mediated by SM (d18:1/24:0), while ceramide (Cer) species (d18:1/24:1) and (d18:1/24:0)were associated with increased risk. Moreover, we observed the enhanced expression of key enzymes involved in the SL pathway in blood cells from severe COVID-19 patients, suggesting a primary flow towards Cer generation in tandem with SM synthesis. These findings underscore the potential of SM as a prognostic biomarker for COVID-19 and highlight promising pharmacological targets. By targeting sphingolipid pathways, novel therapeutic strategies may emerge to mitigate the severity of COVID-19 and improve patient outcomes.


Subject(s)
COVID-19 , Sphingomyelins , Humans , Prognosis , SARS-CoV-2/metabolism , Ceramides/metabolism , Sphingolipids/metabolism , Biomarkers
2.
Brain Behav Immun ; 114: 275-286, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37648004

ABSTRACT

BACKGROUND: Sex-determined differences are rarely addressed in the management of diseases, despite well-known contrasting outcomes between female and male patients. In COVID-19 there is a remarkable disparity, with higher rates of mortality and more severe acute disease in men compared to women, who are mostly affected by long COVID-19. Furthermore, whether androgens play a protective or detrimental role in COVID-19 is still a matter of debate. Hence, the adequate management of the disease, especially regarding men presenting acute disease aggravation, still needs important data to elucidate the interplay between sex hormones and host immune responses that drive the worse evolution in male patients. METHODS: A cohort of 92 controls and 198 non-severe and severe COVID-19 patients, from both sexes, was assessed for clinical outcomes, plasma steroids, gonadotropins, sex hormone binding globulin (SHBG) and immune mediators, before vaccination. These data were correlated with the global gene expression of blood leukocytes. The androgen receptor (AR) signaling pathway was investigated by transcriptomics and tracheal aspirate was obtained from severe patients for SARS-COV-2 quantification in the respiratory tract. The interplay among clinical, endocrine and immunological data deciphered the sex differences in COVID-19. Importantly, statistical analyses, using 95% confidence interval, considered confounding factors such as age and comorbidities, to definitely parse the role of androgens in the disease outcome. RESULTS: There were notable contrasting levels of testosterone and dihydrotestosterone (DHT) throughout the disease course in male but not female patients. Inflammatory mediators presented significant negative correlations with testosterone, which was partially dependent on age and diabetes in men. Male subjects with severe COVID-19 had a significant up regulation of the AR signaling pathway, including modulation of TMPRSS2 and SRD5A1 genes, which are related to the viral infection and DHT production. Indeed, men had a higher viral load in the tracheal aspirate and levels of DHT were associated with increased relative risk of death. In contrast, the testosterone hormone, which was notably reduced in severe disease, was significantly related with susceptibility to COVID-19 worsening in male patients. Secondary hypogonadism was ruled out in the male severe COVID-19 subjects, as FSH, LH, and SHBG levels were not significantly altered. Instead, these subjects tended to have increased gonadotropin levels. Most interestingly, in this study we identified, for the first time, combined sets of clinical and immunoendocrine parameters that together predicted progression from non-severe to severe COVID-19 in men. One of the limitations of our study was the low or undetectable levels of DHT in many patients. Then, the evaluation of enzymes related to biosynthesis and signaling by androgens was mandatory and reiterated our findings. CONCLUSIONS: These original results unraveled the disease immunoendocrine regulation, despite vaccination or comorbidities and pointed to the fundamental divergent role of the androgens testosterone and DHT in the determination of COVID-19 outcomes in men. Therefore, sex-specific management of the dysregulated responses, treatments or public health measures should be considered for the control of COVID-19 pandemic.

3.
J Bone Miner Res ; 38(8): 1135-1153, 2023 08.
Article in English | MEDLINE | ID: mdl-37314430

ABSTRACT

Leukotrienes (LTs) are derived from arachidonic acid metabolism by the 5-lipoxygenase (5-LO) enzyme. The production of LTs is stimulated in the pathogenesis of rheumatoid arthritis (RA), osteoarthritis, and periodontitis, with a relevant contribution to bone resorption. However, its role in bone turnover, particularly the suppression of bone formation by modulating the function of osteoclasts and osteoblasts, remains unclear. We investigated the effects of LTs on bone metabolism and their impact on osteogenic differentiation and osteoclastogenesis using a 5-LO knockout (KO) mouse model. Results from micro-computed tomography (µCT) analysis of femur from 8-week-old 5-LO-deficient mice showed increased cortical bone and medullary region in females and males and decreased trabecular bone in females. In the vertebra, we observed increased marrow area in both females and males 5-LO KO and decreased trabecular bone only in females 5-LO KO. Immunohistochemistry (IHC) analysis showed higher levels of osteogenic markers tissue-nonspecific alkaline phosphatase (TNAP) and osteopontin (OPN) and lower expression of osteoclastogenic marker tartrate-resistant acid phosphatase (TRAP) in the femurs of 5-LO KO mice versus wild-type (WT). Alkaline phosphatase activity and mineralization assay results showed that the 5-LO absence enhances osteoblasts differentiation and mineralization but decreases the proliferation. Alkaline phosphatase (ALP), Bglap, and Sp7 gene expression were higher in 5-LO KO osteoblasts compared to WT cells. Eicosanoids production was higher in 5-LO KO osteoblasts except for thromboxane 2, which was lower in 5-LO-deficient mice. Proteomic analysis identified the downregulation of proteins related to adenosine triphosphate (ATP) metabolism in 5-LO KO osteoblasts, and the upregulation of transcription factors such as the adaptor-related protein complex 1 (AP-1 complex) in long bones from 5-LO KO mice leading to an increased bone formation pattern in 5-LO-deficient mice. We observed enormous differences in the morphology and function of osteoclasts with reduced bone resorption markers and impaired osteoclasts in 5-LO KO compared to WT osteoclasts. Altogether, these results demonstrate that the absence of 5-LO is related to the greater osteogenic profile. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Bone Resorption , Osteogenesis , Male , Female , Mice , Animals , Alkaline Phosphatase/metabolism , X-Ray Microtomography , Proteomics , Osteoclasts/metabolism , Osteoblasts/metabolism , Bone Resorption/pathology , Cell Differentiation , Mice, Knockout , Leukotrienes/metabolism , Leukotrienes/pharmacology
4.
Immunology ; 169(3): 323-343, 2023 07.
Article in English | MEDLINE | ID: mdl-36740582

ABSTRACT

COVID-19 has a broad spectrum of clinical manifestations associated with the host immune response heterogeneity. Despite the advances in COVID-19 research, it is still crucial to seek a panel of molecular markers that enable accurate stratification of COVID-19 patients. Here, we performed a study that combined analysis of blood transcriptome, demographic data, clinical aspects and laboratory findings from 66 participants classified into different degrees of COVID-19 severity and healthy subjects. We identified a perturbation in blood-leukocyte transcriptional profile associated with COVID-19 aggravation, which was mainly related to processes that disfavoured lymphocyte activation and favoured neutrophil activation. This transcriptional profile stratified patients according to COVID-19 severity. Hence, it enabled identification of a turning point in transcriptional dynamics that distinguished disease outcomes and non-hospitalized from hospitalized moderate patients. Central genes of this unique neutrophil signature were S100A9, ANXA3, CEACAM6, VNN1, OLFM4, IL1R2, TCN1 and CD177. Our study indicates the molecular changes that are linked with the differing clinical aspects presented by humans when suffering from COVID-19, which involve neutrophil activation.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , Neutrophils , Transcriptome , Biomarkers
5.
Viruses ; 15(2)2023 02 19.
Article in English | MEDLINE | ID: mdl-36851787

ABSTRACT

COVID-19 is associated with a dysregulated immune response. Currently, several medicines are licensed for the treatment of this disease. Due to their significant role in inhibiting pro-inflammatory cytokines and lipid mediators, glucocorticoids (GCs) have attracted a great deal of attention. Similarly, the endocannabinoid (eCB) system regulates various physiological processes including the immunological response. Additionally, during inflammatory and thrombotic processes, phospholipids from cell membranes are cleaved to produce platelet-activating factor (PAF), another lipid mediator. Nonetheless, the effect of GCs on this lipid pathway during COVID-19 therapy is still unknown. This is a cross-sectional study involving COVID-19 patients (n = 200) and healthy controls (n = 35). Target tandem mass spectrometry of plasma lipid mediators demonstrated that COVID-19 severity affected eCBs and PAF synthesis. This increased synthesis of eCB was adversely linked with systemic inflammatory markers IL-6 and sTREM-1 levels and neutrophil counts. The use of GCs altered these lipid pathways by reducing PAF and increasing 2-AG production. Corroborating this, transcriptome analysis of GC-treated patients blood leukocytes showed differential modulation of monoacylglycerol lipase and phospholipase A2 gene expression. Altogether, these findings offer a breakthrough in our understanding of COVID-19 pathophysiology, indicating that GCs may promote additional protective pharmacological effects by influencing the eCB and PAF pathways involved in the disease course.


Subject(s)
COVID-19 , Platelet Activating Factor , Humans , Cross-Sectional Studies , Endocannabinoids , Glucocorticoids/therapeutic use
6.
J Pathol ; 259(3): 291-303, 2023 03.
Article in English | MEDLINE | ID: mdl-36441400

ABSTRACT

A low-grade and persistent inflammation, which is the hallmark of obesity, requires the participation of NLRP3 and cell death. During Mycobacterium tuberculosis infection, NLRP3 signaling is important for bacterial killing by macrophages in vitro but was shown to be dispensable for host protection in vivo. We hypothesized that during obesity-tuberculosis (TB) comorbidity, NLRP3 signaling might play a detrimental role by inducing excessive inflammation. We employed a model of high-fat-diet-induced obesity, followed by M. tuberculosis infection in C57BL/6 mice. Obese mice presented increased susceptibility to infection and pulmonary immunopathology compared to lean mice. Using treatment with NLRP3 antagonist and Nlrp3-/- mice, we showed that NLRP3 signaling promoted cell death, with no effect in bacterial loads. The levels of palmitate were higher in the lungs of obese infected mice compared to lean counterparts, and we observed that this lipid increased M. tuberculosis-induced macrophage death in vitro, which was dependent on NLRP3 and caspase-1. At the chronic phase, although lungs of obese Nlrp3-/- mice showed an indication of granuloma formation compared to obese wild-type mice, there was no difference in the bacterial load. Our findings indicate that NLRP3 may be a potential target for host-directed therapy to reduce initial and severe inflammation-mediated disease and to treat comorbidity-associated TB. © 2022 The Pathological Society of Great Britain and Ireland.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Palmitates/metabolism , Mice, Inbred C57BL , Tuberculosis/pathology , Lung/pathology , Inflammation/pathology , Obesity/metabolism , Cell Death , Comorbidity
7.
Neuropharmacology ; 224: 109314, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36336070

ABSTRACT

The transient receptor potential vanilloid type-1 (TRPV1) channels have been implicated in the modulation of aversive responses. The endocannabinoid anandamide acts as an endogenous TRPV1 agonist, exerting opposite functions at TRPV1 and type-1 cannabinoid receptors (CB1R). Here we tested the hypothesis that hippocampal TRPV1 modulates contextual fear memory retrieval and investigated the influence of the aversive stimulus intensity as well as the role of endocannabinoid signaling. Male C57BL/6J mice were tested for contextual fear memory after low-, moderate-, or high-intensity shock protocols. The selective TRPV1 blockers SB366791 (1-10 nmol) and 6-I-NC (2 nmol) were infused via intra-dorsal hippocampus before the retrieval test session. The local levels of endocannabinoids and Arc and Zif268 mRNAs, involved in synaptic plasticity and memory, were quantified. First, both TRPV1 blockers reduced memory retrieval in animals exposed to moderate or high (but not low) intensity training protocols. In the second series of results, the magnitude of the freezing responses positively correlated with the hippocampal anandamide levels; TRPV1 and CB1R were found co-localized in this brain region; and the CB1R antagonist, AM251, prevented the effects of SB366791. Thus, endocannabinoid signaling possibly mediates the effects of TRPV1 blockers. Finally, inhibition of memory retrieval by TRPV1 blockers increased Arc and Zif268 mRNAs and impaired fear memory reinstatement. In conclusion, the modulation of fear memories by dorsal hippocampal TRPV1 channels may depend on the aversive stimulus intensity and occur via anandamide/CB1 signaling. Moreover, TRPV1 blockers promote Arc and Zif268 transcription, with subsequent attenuation of aversive memory reinstatement.


Subject(s)
Endocannabinoids , Fear , Mice , Animals , Male , Endocannabinoids/pharmacology , Mice, Inbred C57BL , Hippocampus , Receptor, Cannabinoid, CB1 , TRPV Cation Channels/metabolism
8.
Int J Mol Sci ; 23(17)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36077133

ABSTRACT

The non-classical histocompatibility antigen G (HLA-G) is an immune checkpoint molecule that has been implicated in viral disorders. We evaluated the plasma soluble HLA-G (sHLA-G) in 239 individuals, arranged in COVID-19 patients (n = 189) followed up at home or in a hospital, and in healthy controls (n = 50). Increased levels of sHLA-G were observed in COVID-19 patients irrespective of the facility care, gender, age, and the presence of comorbidities. Compared with controls, the sHLA-G levels increased as far as disease severity progressed; however, the levels decreased in critically ill patients, suggesting an immune exhaustion phenomenon. Notably, sHLA-G exhibited a positive correlation with other mediators currently observed in the acute phase of the disease, including IL-6, IL-8 and IL-10. Although sHLA-G levels may be associated with an acute biomarker of COVID-19, the increased levels alone were not associated with disease severity or mortality due to COVID-19. Whether the SARS-CoV-2 per se or the innate/adaptive immune response against the virus is responsible for the increased levels of sHLA-G are questions that need to be further addressed.


Subject(s)
COVID-19 , HLA-G Antigens , Histocompatibility Antigens Class I , Humans , Immune Checkpoint Proteins , Plasma , SARS-CoV-2
9.
J Immunol ; 209(2): 250-261, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35768148

ABSTRACT

Lipid and cholinergic mediators are inflammatory regulators, but their role in the immunopathology of COVID-19 is still unclear. Here, we used human blood and tracheal aspirate (TA) to investigate whether acetylcholine (Ach), fatty acids (FAs), and their derived lipid mediators (LMs) are associated with COVID-19 severity. First, we analyzed the perturbation profile induced by SARS-CoV-2 infection in the transcriptional profile of genes related to the ACh and FA/LM pathways. Blood and TA were used for metabolomic and lipidomic analyses and for quantification of leukocytes, cytokines, and ACh. Differential expression and coexpression gene network data revealed a unique transcriptional profile associated with ACh and FA/LM production, release, and cellular signaling. Transcriptomic data were corroborated by laboratory findings: SARS-CoV-2 infection increased plasma and TA levels of arachidonic acid, 5-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid, 11-hydroxy-5Z,8Z,12E,14Z-eicosatetraenoic acid, and ACh. TA samples also exhibited high levels of PGE2, thromboxane B2, 12-oxo-5Z,8Z,10E,14Z-eicosatetraenoic acid, and 6-trans-leukotriene B4 Bioinformatics and experimental approaches demonstrated robust correlation between transcriptional profile in Ach and FA/LM pathways and parameters of severe COVID-19. As expected, the increased neutrophil-to-lymphocyte ratio, neutrophil counts, and cytokine levels (IL-6, IL-10, IL-1ß, and IL-8) correlated with worse clinical scores. Glucocorticoids protected severe and critical patients and correlated with reduced Ach levels in plasma and TA samples. We demonstrated that pulmonary and systemic hyperinflammation in severe COVID-19 are associated with high levels of Ach and FA/LM. Glucocorticoids favored the survival of patients with severe/critical disease, and this effect was associated with a reduction in ACh levels.


Subject(s)
Acetylcholine , COVID-19 , Arachidonic Acid , Arachidonic Acids/pharmacology , Fatty Acids , Glucocorticoids , Humans , SARS-CoV-2
10.
Am J Physiol Heart Circ Physiol ; 323(2): H322-H335, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35714175

ABSTRACT

Clinical data point to adverse cardiovascular events elicited by testosterone replacement therapy. Testosterone is the main hormone used in gender-affirming hormone therapy (GAHT) by transmasculine people. However, the cardiovascular impact of testosterone in experimental models of GAHT remains unknown. Sex hormones modulate T-cell activation, and immune mechanisms contribute to cardiovascular risk. The present study evaluated whether testosterone negatively impacts female cardiovascular function by enhancing Th17 cell-linked effector mechanisms. Female (8 wk old) C57BL/6J mice received testosterone (48 mg/kg/wk) for 8 wk. Male mice were used for phenotypical comparisons. The hormone treatment in female mice increased circulating testosterone to levels observed in male mice. Testosterone increased lean body mass and body mass index, and decreased perigonadal fat mass, mimicking clinical findings. After 8 wk, testosterone decreased endothelium-dependent vasodilation and increased peripheral Th17 cells. After 24 wk, testosterone increased blood pressure in female mice. Ovariectomy did not intensify phenotypical or cardiovascular effects by testosterone. Female mice lacking T and B cells [Rag1 knockout (-/-)], as well as female mice lacking IL-17 receptor (IL-17Ra-/-), did not exhibit vascular dysfunction induced by testosterone. Testosterone impaired endothelium-dependent vasodilation in female mice lacking γδ T cells, similarly to the observed in wild-type female mice. Adoptive transfer of CD4+ T cells restored testosterone-induced vascular dysfunction in Rag1-/- female mice. Together, these data suggest that CD4+ T cells, most likely Th17 cells, are central to vascular dysfunction induced by testosterone in female mice, indicating that changes in immune-cell balance are important in the GAHT in transmasculine people.NEW & NOTEWORTHY Sex hormone-induced cardiovascular events are important undesirable effects in transgender people under GAHT. Studies addressing the cardiovascular impact of GAHT will certainly contribute to improve healthcare services offered to this population. Our study showing that vascular dysfunction, via Th17 cell-related mechanisms, precedes increased blood pressure induced by testosterone in a GAHT mouse model, reveals potential mechanisms involved in GAHT-related cardiovascular events and may provide new markers/targets for clinical practices in transmasculine people.


Subject(s)
Cardiovascular Diseases , Testosterone , Animals , Cardiovascular Diseases/drug therapy , Disease Models, Animal , Female , Gonadal Steroid Hormones , Homeodomain Proteins , Humans , Male , Mice , Mice, Inbred C57BL , Th17 Cells
11.
Biomolecules ; 12(5)2022 04 19.
Article in English | MEDLINE | ID: mdl-35625532

ABSTRACT

Patients with COVID-19 predominantly have a respiratory tract infection and acute lung failure is the most severe complication. While the molecular basis of SARS-CoV-2 immunopathology is still unknown, it is well established that lung infection is associated with hyper-inflammation and tissue damage. Matrix metalloproteinases (MMPs) contribute to tissue destruction in many pathological situations, and the activity of MMPs in the lung leads to the release of bioactive mediators with inflammatory properties. We sought to characterize a scenario in which MMPs could influence the lung pathogenesis of COVID-19. Although we observed high diversity of MMPs in lung tissue from COVID-19 patients by proteomics, we specified the expression and enzyme activity of MMP-2 in tracheal-aspirate fluid (TAF) samples from intubated COVID-19 and non-COVID-19 patients. Moreover, the expression of MMP-8 was positively correlated with MMP-2 levels and possible shedding of the immunosuppression mediator sHLA-G and sTREM-1. Together, overexpression of the MMP-2/MMP-8 axis, in addition to neutrophil infiltration and products, such as reactive oxygen species (ROS), increased lipid peroxidation that could promote intensive destruction of lung tissue in severe COVID-19. Thus, the inhibition of MMPs can be a novel target and promising treatment strategy in severe COVID-19.


Subject(s)
COVID-19 , Matrix Metalloproteinase 2 , HLA-G Antigens , Humans , Immunity , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 8/metabolism , Oxidative Stress , SARS-CoV-2
12.
Viruses ; 13(12)2021 12 15.
Article in English | MEDLINE | ID: mdl-34960790

ABSTRACT

Uncontrolled inflammatory responses play a critical role in coronavirus disease (COVID-19). In this context, because the triggering-receptor expressed on myeloid cells-1 (TREM-1) is considered an intrinsic amplifier of inflammatory signals, this study investigated the role of soluble TREM-1 (sTREM-1) as a biomarker of the severity and mortality of COVID-19. Based on their clinical scores, we enrolled COVID-19 positive patients (n = 237) classified into mild, moderate, severe, and critical groups. Clinical data and patient characteristics were obtained from medical records, and their plasma inflammatory mediator profiles were evaluated with immunoassays. Plasma levels of sTREM-1 were significantly higher among patients with severe disease compared to all other groups. Additionally, levels of sTREM-1 showed a significant positive correlation with other inflammatory parameters, such as IL-6, IL-10, IL-8, and neutrophil counts, and a significant negative correlation was observed with lymphocyte counts. Most interestingly, sTREM-1 was found to be a strong predictive biomarker of the severity of COVID-19 and was related to the worst outcome and death. Systemic levels of sTREM-1 were significantly correlated with the expression of matrix metalloproteinases (MMP)-8, which can release TREM-1 from the surface of peripheral blood cells. Our findings indicated that quantification of sTREM-1 could be used as a predictive tool for disease outcome, thus improving the timing of clinical and pharmacological interventions in patients with COVID-19.


Subject(s)
Biomarkers/blood , COVID-19/diagnosis , COVID-19/mortality , Leukocytes/metabolism , Matrix Metalloproteinase 8/metabolism , Severity of Illness Index , Triggering Receptor Expressed on Myeloid Cells-1/blood , Adolescent , Adult , Aged , Aged, 80 and over , Brazil , Female , Humans , Inflammation , Interleukin-10/blood , Interleukin-6/blood , Interleukin-8/blood , Leukocyte Count , Male , Middle Aged , Neutrophils/metabolism , Prospective Studies , SARS-CoV-2 , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Young Adult
13.
J Ethnopharmacol ; 278: 114255, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34062248

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Green propolis is produced by Apis mellifera honeybees using Baccharis dracunculifolia D.C. (Asteraceae) as substrate. This Southern Brazilian native plant and green propolis have been used in traditional medicine to treat gastric diseases, inflammation and liver disorders. AIM OF THE STUDY: Investigate the effects of baccharin (Bac) or p-coumaric acid (pCA) isolated from B. dracunculifolia D.C. (Asteraceae) over the inflammation induced by lipopolysaccharide (LPS) in vivo. MATERIALS AND METHODS: Inflammation was induced by LPS injection into air-pouches in mice, which were subsequently treated with Bac or pCA. Lavage fluid was collected from air pouches for the quantification of cellular influx via microscopy, and quantification of inflammatory mediators via colorimetric methods, ELISA and liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS: LPS-induced inflammation increased cellular influx and increased the levels of parameters related to vascular permeability and edema formation, such as nitric oxide (NO) and protein extravasation. Moreover, LPS increased the levels of cytokines and eicosanoids in the air-pouches. Importantly, both Bac and pCA suppressed the infiltration of neutrophils, production of NO and protein extravasation. Notably, the compounds promote differential regulation of cytokine and eicosanoid production. CONCLUSIONS: Our results suggest that Bac from green propolis directly affects inflammation by inhibiting the production of cytokines and eicosanoids, while pCA may exert direct, but also indirect effects on inflammation by stimulating the production of regulatory effectors such as interkeukin-10 in vivo.


Subject(s)
Baccharis/chemistry , Coumaric Acids/pharmacology , Propolis/metabolism , Trichothecenes/pharmacology , Animals , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Bees , Brazil , Coumaric Acids/isolation & purification , Cytokines/metabolism , Eicosanoids/metabolism , Female , Inflammation/drug therapy , Lipopolysaccharides , Male , Mice , Mice, Inbred BALB C , Plant Extracts/chemistry , Trichothecenes/isolation & purification
14.
iScience ; 23(12): 101840, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33313489

ABSTRACT

Leishmania braziliensis infection frequently results in cutaneous leishmaniasis (CL). An increase in incidence of drug-resistant CL leading to treatment failure has been reported. Identification of reliable predictors of treatment outcomes is necessary to optimize patient care. Here, we performed a prospective case-control study in which plasma levels of cytokines and lipid mediators were assessed at different time points during antileishmanial therapy in patients with CL from Brazil. Multidimensional analyses were employed to describe a combination of biomarkers able to predict and characterize treatment failure. We found a biosignature influenced mainly by plasma levels of lipid mediators that accurately predicted treatment failure. Furthermore, transcriptomic analysis of a publicly available data set revealed that expression levels of genes related to lipid metabolism measured in skin lesions could distinguish treatment outcomes in CL. Thus, activation of pathways linked to lipid biosynthesis predicts treatment failure in CL. The biomarkers identified may be further explored as therapeutic targets.

15.
Nat Commun ; 11(1): 5433, 2020 10 28.
Article in English | MEDLINE | ID: mdl-33116136

ABSTRACT

Scorpion envenomation is a leading cause of morbidity and mortality among accidents caused by venomous animals. Major clinical manifestations that precede death after scorpion envenomation include heart failure and pulmonary edema. Here, we demonstrate that cardiac dysfunction and fatal outcomes caused by lethal scorpion envenomation in mice are mediated by a neuro-immune interaction linking IL-1 receptor signaling, prostaglandin E2, and acetylcholine release. IL-1R deficiency, the treatment with a high dose of dexamethasone or blockage of parasympathetic signaling using atropine or vagotomy, abolished heart failure and mortality of envenomed mice. Therefore, we propose the use of dexamethasone administration very early after envenomation, even before antiserum, to inhibit the production of inflammatory mediators and acetylcholine release, and to reduce the risk of death.


Subject(s)
Acetylcholine/metabolism , Dinoprostone/biosynthesis , Heart Failure/etiology , Receptors, Interleukin-1 Type I/metabolism , Scorpion Venoms/toxicity , Animals , Antivenins/administration & dosage , Atropine/pharmacology , Dexamethasone/administration & dosage , Disease Models, Animal , Heart Failure/drug therapy , Heart Failure/physiopathology , Humans , Inflammation Mediators/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Cardiovascular , Neuroimmunomodulation/drug effects , Receptors, Interleukin-1 Type I/deficiency , Receptors, Interleukin-1 Type I/genetics , Scorpion Stings/complications , Scorpions , Signal Transduction , Vagotomy
16.
Biomolecules ; 10(6)2020 06 05.
Article in English | MEDLINE | ID: mdl-32517114

ABSTRACT

Histoplasma capsulatum is the agent of histoplasmosis, one of the most frequent mycoses in the world. The infection initiates with fungal spore inhalation, transformation into yeasts in the lungs and establishment of a granulomatous disease, which is characterized by a Th1 response. The production of Th1 signature cytokines, such as IFN-γ, is crucial for yeast clearance from the lungs, and to prevent dissemination. Recently, it was demonstrated that IL-17, a Th17 signature cytokine, is also important for fungal control, particularly in the absence of Th1 response. IL-22 is another cytokine with multiple functions on host response and disease progression. However, little is known about the role of IL-22 during histoplasmosis. In this study, we demonstrated that absence of IL-22 affected the clearance of yeasts from the lungs and increased the spreading to the spleen. In addition, IL-22 deficient mice (Il22-/-) succumbed to infection, which correlated with reductions in the numbers of CD4+ IFN-γ+ T cells, reduced IFN-γ levels, and diminished nitric oxide synthase type 2 (NOS2) expression in the lungs. Importantly, treatment with rIFN-γ mitigated the susceptibility of Il22-/- mice to H. capsulatum infection. These data indicate that IL-22 is crucial for IFN-γ/NO production and resistance to experimental histoplasmosis.


Subject(s)
Histoplasmosis/immunology , Interferon-gamma/immunology , Interleukins/immunology , Animals , Female , Histoplasmosis/pathology , Interferon-gamma/biosynthesis , Interleukins/deficiency , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide/biosynthesis , Nitric Oxide/immunology , Interleukin-22
17.
Biomolecules ; 10(5)2020 05 20.
Article in English | MEDLINE | ID: mdl-32443924

ABSTRACT

Respiratory compromise in Crotalus durissus terrificus (C.d.t.) snakebite is an important pathological condition. Considering that crotoxin (CTX), a phospholipase A2 from C.d.t. venom, is the main component of the venom, the present work investigated the toxin effects on respiratory failure. Lung mechanics, morphology and soluble markers were evaluated from Swiss male mice, and mechanism determined using drugs/inhibitors of eicosanoids biosynthesis pathway and autonomic nervous system. Acute respiratory failure was observed, with an early phase (within 2 h) characterized by enhanced presence of eicosanoids, including prostaglandin E2, that accounted for the increased vascular permeability in the lung. The alterations of early phase were inhibited by indomethacin. The late phase (peaked 12 h) was marked by neutrophil infiltration, presence of pro-inflammatory cytokines/chemokines, and morphological alterations characterized by alveolar septal thickening and bronchoconstriction. In addition, lung mechanical function was impaired, with decreased lung compliance and inspiratory capacity. Hexamethonium, a nicotinic acetylcholine receptor antagonist, hampered late phase damages indicating that CTX-induced lung impairment could be associated with cholinergic transmission. The findings reported herein highlight the impact of CTX on respiratory compromise, and introduce the use of nicotinic blockers and prostanoids biosynthesis inhibitors as possible symptomatic therapy to Crotalus durissus terrificus snakebite.


Subject(s)
Crotoxin/toxicity , Dinoprostone/metabolism , Receptors, Nicotinic/metabolism , Respiratory Insufficiency/metabolism , Snake Bites/metabolism , Animals , Bronchoconstriction , Cytokines/metabolism , Lung/drug effects , Lung/pathology , Lung/physiopathology , Male , Mice , Respiratory Insufficiency/etiology , Respiratory Insufficiency/physiopathology , Snake Bites/complications
18.
Inflamm Res ; 69(1): 105-113, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31754736

ABSTRACT

OBJECTIVE AND DESIGN: Investigate survival outcomes, and immunological and metabolomic effects of hyaluronidase (Hz) treatment during mouse models of acute inflammation and sepsis. METHODS: Survival of C57Bl/6 mice was monitored after lethal challenge with lipopolysaccharide (LPS) or cecal and ligation puncture (CLP)-induced sepsis and treated with Hz or saline. Mice were also challenged with LPS and treated with Hz for leukocyte counting, cytokine quantification and determination of metabolomic profiles in the peritoneal fluid. RESULTS: Hz treatment improved survival outcomes after lethal challenge with LPS or CLP-induced sepsis. LPS challenge promoted acute neutrophil accumulation and production of interleukin-1ß (IL-1ß) and IL-6 in the peritoneum, whereas Hz treatment suppressed neutrophil infiltration and cytokine production. We further characterized the metabolomic alterations caused by LPS challenge, which predicted activity of metabolic pathways related to fatty acids and eicosanoids. Hz treatment had a profound effect over the metabolic response, reflected by reductions of the relative levels of fatty acids. CONCLUSION: Collectively, these data demonstrate that Hz treatment is associated with metabolic reprogramming of pathways that sustain the inflammatory response.


Subject(s)
Hyaluronoglucosaminidase/pharmacology , Sepsis/immunology , Sepsis/metabolism , Acute Disease , Animals , Ascitic Fluid/cytology , Ascitic Fluid/immunology , Ascitic Fluid/metabolism , Disease Models, Animal , Eicosanoids/metabolism , Fatty Acids/metabolism , Immunomodulation , Interleukin-1beta/immunology , Interleukin-6/immunology , Leukocyte Count , Lipopolysaccharides , Male , Metabolic Networks and Pathways/drug effects , Metabolomics , Mice, Inbred C57BL
19.
Front Behav Neurosci ; 13: 73, 2019.
Article in English | MEDLINE | ID: mdl-31057373

ABSTRACT

Depression is a mental illness with a complex and multifactorial etiology, which has been associated with stress and inflammation. Infections, autoimmune diseases, envenomation, and trauma induce an inflammatory response that is characterized by increasing levels of circulating cytokines (e.g., IL-1ß) and lipid mediators [e.g., PGE2 and leukotrienes B4 (LTB4)]. Recently, we showed that LTB4 production by the 5-lipoxygenase (5-LO) pathway regulates IL-1ß and PGE2 release, reducing tissue damage in a model of sterile inflammation. Since IL-1ß and PGE2 increase in serum of stressed patients and potentially trigger depression, we used an animal model of chronic unpredictable stress (CUS) to investigate the potential impact of LTB4 over depression-like symptoms. At basal conditions, 5-LO deficiency (Alox5 -/-) reduces the preference for sucrose, while inducing a higher immobilization time on the tail suspension test when compared 129sv. Moreover, Alox5 -/- mice present increased caspase-1 expression and elevated levels of IL-1ß, IL-17 and PGE2 in the spleen, with increasing corticosterone levels in the frontal cortex but reducing systemic levels. Compared to 129sv mice, CUS induced higher levels of systemic, frontal cortex and hippocampal corticosterone, and also reduced sucrose preference, increased levels of splenic IL-1ß, IL-17 and PGE2 and reduced levels of LTB4. Interestingly, CUS exposure did not alter the reduced sucrose preference shown by Alox5 -/- mice but greatly enhanced splenic PGE2 production. Compared to Alox5 -/- mice at basal conditions, CUS exposure also increased levels of systemic corticosterone, which remained lower than those of CUS-129sv animals. We also observed that treatment with LTB4 decreased caspase-1 expression and systemic levels of corticosterone in CUS-Alox5 -/- mice but there was no significant impact on the reduced sucrose preference. Our results demonstrate that LTB4 controls the hypothalamic-pituitary-adrenal (HPA) axis by regulating levels of systemic corticosterone associated with the repression of caspase-1 expression and production of inflammatory mediators. One limitation of our study is that 129sv and Alox5 -/- mice were not littermates, not sharing, therefore, the same intra-uterine and preweaning environment. Even so, taken together our results indicate that 5-LO activity is critical for the regulation of stress-induced symptoms, suggesting that the Alox5 -/- mouse could be a natural model of corticosterone-independent reduced reward sensitivity.

20.
Front Immunol ; 9: 890, 2018.
Article in English | MEDLINE | ID: mdl-29755470

ABSTRACT

Interleukin (IL)-1ß is a potential target for treatment of several inflammatory diseases, including envenomation by the scorpion Tityus serrulatus. In this context, bioactive lipids such as prostaglandin (PG)E2 and leukotriene (LT)B4 modulate the production of IL-1ß by innate immune cells. Pattern recognition receptors (PRRs) that perceive T. serrulatus venom (TsV), and orchestrate LTB4, PGE2, and cyclic adenosine monophosphate (cAMP) production to regulate IL-1ß release are unknown. Furthermore, molecular mechanisms driving human cell responses to TsV remain uncharacterized. Here, we identified that both CD14 and CD36 control the synthesis of bioactive lipids, inflammatory cytokines, and mortality mediated by TsV. CD14 induces PGE2/cAMP/IL-1ß release and inflammation. By contrast, CD36 shunts eicosanoid metabolism toward production of LTB4, which represses the PGE2/cAMP/IL-1ß axis and mortality. Of importance, the molecular mechanisms observed in mice strongly correlate with those of human cell responses to TsV. Overall, this study provides major insights into molecular mechanisms connecting CD14 and CD36 with differential eicosanoid metabolism and inflammation mediated by IL-1ß.


Subject(s)
CD36 Antigens/immunology , Interleukin-1beta/immunology , Lipopolysaccharide Receptors/immunology , Scorpion Stings/immunology , Scorpion Venoms/immunology , Adult , Animals , CD36 Antigens/metabolism , Disease Models, Animal , Eicosanoids/metabolism , Female , Healthy Volunteers , Humans , Interleukin-1beta/metabolism , Leukocytes, Mononuclear , Lipopolysaccharide Receptors/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Primary Cell Culture , Scorpion Stings/blood , Scorpion Stings/mortality , Scorpions/immunology , Signal Transduction/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL