Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Mol Microbiol ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720451

ABSTRACT

Aedes aegypti females are natural vectors of important arboviruses such as dengue, zika, and yellow fever. Mosquitoes activate innate immune response signaling pathways upon infection, as a resistance mechanism to fight pathogens and limit their propagation. Despite the beneficial effects of immune activation for insect vectors, phenotypic costs ultimately affect their fitness. However, the underlying mechanisms that mediate these fitness costs remain poorly understood. Given the high energy required to mount a proper immune response, we hypothesized that systemic activation of innate immunity would impair flight muscle mitochondrial function, compromising tissue energy demand and flight activity. Here, we investigated the dynamic effects of activation of innate immunity by intra-thoracic zymosan injection on A. aegypti flight muscle mitochondrial metabolism. Zymosan injection significantly increased defensin A expression in fat bodies in a time-dependent manner that compromised flight activity. Although oxidant levels in flight muscle were hardly altered, ATP-linked respiratory rates driven by mitochondrial pyruvate+proline oxidation were significantly reduced at 24 h upon zymosan injection. Oxidative phosphorylation coupling was preserved regardless of innate immune response activation along 24 h. Importantly, rotenone-sensitive respiration and complex I-III activity were specifically reduced 24 h upon zymosan injection. Also, loss of complex I activity compromised ATP-linked and maximal respiratory rates mediated by mitochondrial proline oxidation. Finally, the magnitude of innate immune response activation negatively correlated with respiratory rates, regardless of the metabolic states. Collectively, we demonstrate that activation of innate immunity is strongly associated with reduced flight muscle complex I activity with direct consequences to mitochondrial proline oxidation and flight activity. Remarkably, our results indicate a trade-off between dispersal and immunity exists in an insect vector, underscoring the potential consequences of disrupted flight muscle mitochondrial energy metabolism to arbovirus transmission.

2.
Insect Biochem Mol Biol ; 146: 103776, 2022 07.
Article in English | MEDLINE | ID: mdl-35526745

ABSTRACT

Wolbachia pipientis is a maternally transmitted bacterium that mostly colonizes arthropods, including the mosquito Aedes fluviatilis, potentially affecting different aspects of host physiology. This intracellular bacterium prefers gonadal tissue cells, interfering with the reproductive cycle of insects, arachnids, crustaceans, and nematodes. Wolbachia's ability to modulate the host's reproduction is related to its success in prevalence and frequency. Infecting oocytes is essential for vertical propagation, ensuring its presence in the germline. The mosquito Ae. fluviatilis is a natural host for this bacterium and therefore represents an excellent experimental model in the effort to understand host-symbiont interactions and the mutual metabolic regulation. The aim of this study was to comparatively describe metabolic changes in naturally Wolbachia-infected and uninfected ovaries of Ae. fluviatilis during the vitellogenic period of oogenesis, thus increasing the knowledge about Wolbachia parasitic/symbiotic mechanisms.


Subject(s)
Aedes , Wolbachia , Aedes/microbiology , Animals , Oogenesis , Symbiosis/physiology , Wolbachia/physiology
3.
Front Cell Infect Microbiol ; 11: 732925, 2021.
Article in English | MEDLINE | ID: mdl-34485182

ABSTRACT

Aedes aegypti mosquitoes transmit arboviruses of important global health impact, and their intestinal microbiota can influence vector competence by stimulating the innate immune system. Midgut epithelial cells also produce toxic reactive oxygen species (ROS) by dual oxidases (DUOXs) that are essential players in insect immunity. Strigomonas culicis is a monoxenous trypanosomatid that naturally inhabits mosquitoes; it hosts an endosymbiotic bacterium that completes essential biosynthetic pathways of the parasite and influences its oxidative metabolism. Our group previously showed that S. culicis hydrogen peroxide (H2O2)-resistant (WTR) strain is more infectious to A. aegypti mosquitoes than the wild-type (WT) strain. Here, we investigated the influence of both strains on the midgut oxidative environment and the effect of infection on mosquito fitness and immunity. WT stimulated the production of superoxide by mitochondrial metabolism of midgut epithelial cells after 4 days post-infection, while WTR exacerbated H2O2 production mediated by increased DUOX activity and impairment of antioxidant system. The infection with both strains also disrupted the fecundity and fertility of the females, with a greater impact on reproductive fitness of WTR-infected mosquitoes. The presence of these parasites induced specific transcriptional modulation of immune-related genes, such as attacin and defensin A during WTR infection (11.8- and 6.4-fold, respectively) and defensin C in WT infection (7.1-fold). Thus, we propose that A. aegypti oxidative response starts in early infection time and does not affect the survival of the H2O2-resistant strain, which has a more efficient antioxidant system. Our data provide new biological aspects of A. aegypti-S. culicis relationship that can be used later in alternative vector control strategies.


Subject(s)
Aedes , Animals , Female , Genetic Fitness , Hydrogen Peroxide , Mosquito Vectors , Oxidation-Reduction
4.
PLoS Negl Trop Dis ; 14(10): e0008706, 2020 10.
Article in English | MEDLINE | ID: mdl-33095767

ABSTRACT

Prostaglandins (PGs) are immuno-active lipids that mediate the immune response in invertebrates and vertebrates. In insects, PGs play a role on different physiological processes such as reproduction, ion transport and regulation of cellular immunity. However, it is unclear whether PGs play a role in invertebrate's humoral immunity, and, if so, which immune signaling pathways would be modulated by PGs. Here, we show that Aedes aegypti gut microbiota and Gram-negative bacteria challenge induces prostaglandin production sensitive to an irreversible inhibitor of the vertebrate cyclooxygenase, acetylsalicylic acid (ASA). ASA treatment reduced PG synthesis and is associated with decreased expression of components of the Toll and IMD immune pathways, thereby rendering mosquitoes more susceptible to both bacterial and viral infections. We also shown that a cytosolic phospholipase (PLAc), one of the upstream regulators of PG synthesis, is induced by the microbiota in the midgut after blood feeding. The knockdown of the PLAc decreased prostaglandin production and enhanced the replication of Dengue in the midgut. We conclude that in Ae. aegypti, PGs control the amplitude of the immune response to guarantee an efficient pathogen clearance.


Subject(s)
Aedes/virology , Dengue Virus/physiology , Immunity, Humoral , Prostaglandins/metabolism , Aedes/immunology , Animals , Cell Line , Dengue Virus/immunology , Female , Gene Expression Regulation, Enzymologic , Host-Pathogen Interactions , Phospholipases A2/genetics , Phospholipases A2/metabolism , Prostaglandins/genetics
5.
Sci Rep ; 9(1): 17468, 2019 11 25.
Article in English | MEDLINE | ID: mdl-31767875

ABSTRACT

Trypanosomatids are protozoan parasites that infect thousands of globally dispersed hosts, potentially affecting their physiology. Several species of trypanosomatids are commonly found in phytophagous insects. Leptomonas wallacei is a gut-restricted insect trypanosomatid only retrieved from Oncopeltus fasciatus. The insects get infected by coprophagy and transovum transmission of L. wallacei cysts. The main goal of the present study was to investigate the effects of a natural infection by L. wallacei on the hemipteran insect O. fasciatus, by comparing infected and uninfected individuals in a controlled environment. The L. wallacei-infected individuals showed reduced lifespan and morphological alterations. Also, we demonstrated a higher infection burden in females than in males. The infection caused by L. wallacei reduced host reproductive fitness by negatively impacting egg load, oviposition, and eclosion, and promoting an increase in egg reabsorption. Moreover, we associated the egg reabsorption observed in infected females, with a decrease in the intersex gene expression. Finally, we suggest alterations in population dynamics induced by L. wallacei infection using a mathematical model. Collectively, our findings demonstrated that L. wallacei infection negatively affected the physiology of O. fasciatus, which suggests that L. wallacei potentially has a vast ecological impact on host population growth.


Subject(s)
Heteroptera/physiology , Trypanosomatina/pathogenicity , Animals , Case-Control Studies , Female , Heteroptera/parasitology , Longevity , Male , Models, Theoretical , Oviposition , Population Dynamics , Sex Characteristics
6.
Sci Rep ; 9(1): 13960, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31562347

ABSTRACT

Flotillin-1 and flotillin-2 are highly conserved proteins that localize into cholesterol-rich microdomains in cellular membranes. Flotillins are closely related to the occurrence and development of various types of human cancers. Flotillin-1 is highly expressed in breast cancer, and the high expression level of flotillin-1 is significantly correlated with poorer patient survival. Here we studied the relationship between the formation of lipid rafts and the expression of flotillins and lipids in human breast cancer cells. We used the polyphenol compound resveratrol to alter the structure and function of the plasma membrane. Our data revealed an increase in fatty acids in MCF-7 and MDA-MB-231 cells upon resveratrol treatment. Interestingly, we also found an increase in the expression of both flotillin-1 and flotillin-2 in breast tumor cells after treatment. Resveratrol also induced changes in the pattern of flotillin distribution among detergent-resistant lipid rafts fractions in both cell lines and induced the nuclear translocation of flotillin-2. Since resveratrol has been pointed out as a putative cancer therapy agent, our results could have an impact on the understanding of the effects of resveratrol in tumor cells.


Subject(s)
Antioxidants/pharmacology , Cell Membrane/drug effects , Cell Survival/drug effects , Fatty Acids/metabolism , Membrane Proteins/metabolism , Resveratrol/pharmacology , Breast Neoplasms/metabolism , Cell Membrane/metabolism , Humans , MCF-7 Cells , Membrane Microdomains/drug effects , Membrane Microdomains/metabolism
7.
PLoS Negl Trop Dis ; 12(12): e0007001, 2018 12.
Article in English | MEDLINE | ID: mdl-30566440

ABSTRACT

Leprosy is an infectious disease caused by Mycobacterium leprae and frequently resulting in irreversible deformities and disabilities. Ticks play an important role in infectious disease transmission due to their low host specificity, worldwide distribution, and the biological ability to support transovarial transmission of a wide spectrum of pathogens, including viruses, bacteria and protozoa. To investigate a possible role for ticks as vectors of leprosy, we assessed transovarial transmission of M. leprae in artificially-fed adult female Amblyomma sculptum ticks, and infection and growth of M. leprae in tick cell lines. Our results revealed M. leprae RNA and antigens persisting in the midgut and present in the ovaries of adult female A. sculptum at least 2 days after oral infection, and present in their progeny (eggs and larvae), which demonstrates the occurrence of transovarial transmission of this pathogen. Infected tick larvae were able to inoculate viable bacilli during blood-feeding on a rabbit. Moreover, following inoculation with M. leprae, the Ixodes scapularis embryo-derived tick cell line IDE8 supported a detectable increase in the number of bacilli for at least 20 days, presenting a doubling time of approximately 12 days. As far as we know, this is the first in vitro cellular system able to promote growth of M. leprae. Finally, we successfully transformed a clinical M. leprae isolate by inserting the reporter plasmid pCHERRY3; transformed bacteria infected and grew in IDE8 cells over a 2-month period. Taken together, our data not only support the hypothesis that ticks may have the potential to act as a reservoir and/or vector of leprosy, but also suggest the feasibility of technological development of tick cell lines as a tool for large-scale production of M. leprae bacteria, as well as describing for the first time a method for their transformation.


Subject(s)
Arachnid Vectors/physiology , Ixodes/microbiology , Ixodidae/microbiology , Leprosy/transmission , Mycobacterium leprae/physiology , Animals , Arachnid Vectors/microbiology , Cell Line , Female , Humans , Ixodes/physiology , Ixodidae/physiology , Leprosy/microbiology , Male , Mycobacterium leprae/genetics , Rabbits
8.
Mem Inst Oswaldo Cruz ; 113(10): e180290, 2018 Aug 23.
Article in English | MEDLINE | ID: mdl-30156598

ABSTRACT

BACKGROUND: Zika has emerged as a new public health threat after the explosive epidemic in Brazil in 2015. It is an arbovirus transmitted mainly by Aedes aegypti mosquitoes. The knowledge of physiological, behavioural and biological features in virus-infected vectors may help the understanding of arbovirus transmission dynamics and elucidate their influence in vector capacity. OBJECTIVES: We aimed to investigate the effects of Zika virus (ZIKV) infection in the behaviour of Ae. aegypti females by analysing the locomotor activity, egg production and viability. METHODOLOGY: Ae. aegypti females were orally infected with ZIKV through an artificial feeder to access egg production, egg viability and locomotor activity. For egg production and viability assays, females were kept in cages containing an artificial site for oviposition and eggs were counted. Locomotor activity assays were performed in activity monitors and an average of 5th, 6th and 7th days after infective feeding was calculated. FINDINGS: No significant difference in the number of eggs laid per females neither in their viability were found between ZIKV infected and non-infected females, regardless the tested pair of mosquito population and virus strain and the gonotrophic cycles. Locomotor activity assays were performed regardless of the locomotor activity in ZIKV infected females was observed, in both LD and DD conditions. MAIN CONCLUSIONS: The lower locomotor activity may reduce the mobility of the mosquitoes and may explain case clustering within households reported during Zika outbreaks such as in Rio de Janeiro 2015. Nevertheless, the mosquitoes infected with ZIKV are still able to disseminate and to transmit the disease, especially in places where there are many oviposition sites.


Subject(s)
Aedes/anatomy & histology , Locomotion , Mosquito Vectors/anatomy & histology , Oviposition , Ovum/growth & development , Zika Virus Infection/transmission , Aedes/growth & development , Aedes/virology , Animals , Brazil , Female , Fertility , Mosquito Vectors/growth & development , Mosquito Vectors/virology , Population Dynamics
9.
Mem. Inst. Oswaldo Cruz ; 113(10): e180290, 2018. graf
Article in English | LILACS | ID: biblio-955105

ABSTRACT

BACKGROUND Zika has emerged as a new public health threat after the explosive epidemic in Brazil in 2015. It is an arbovirus transmitted mainly by Aedes aegypti mosquitoes. The knowledge of physiological, behavioural and biological features in virus-infected vectors may help the understanding of arbovirus transmission dynamics and elucidate their influence in vector capacity. OBJECTIVES We aimed to investigate the effects of Zika virus (ZIKV) infection in the behaviour of Ae. aegypti females by analysing the locomotor activity, egg production and viability. METHODOLOGY Ae. aegypti females were orally infected with ZIKV through an artificial feeder to access egg production, egg viability and locomotor activity. For egg production and viability assays, females were kept in cages containing an artificial site for oviposition and eggs were counted. Locomotor activity assays were performed in activity monitors and an average of 5th, 6th and 7th days after infective feeding was calculated. FINDINGS No significant difference in the number of eggs laid per females neither in their viability were found between ZIKV infected and non-infected females, regardless the tested pair of mosquito population and virus strain and the gonotrophic cycles. Locomotor activity assays were performed regardless of the locomotor activity in ZIKV infected females was observed, in both LD and DD conditions. MAIN CONCLUSIONS The lower locomotor activity may reduce the mobility of the mosquitoes and may explain case clustering within households reported during Zika outbreaks such as in Rio de Janeiro 2015. Nevertheless, the mosquitoes infected with ZIKV are still able to disseminate and to transmit the disease, especially in places where there are many oviposition sites.


Subject(s)
Animals , Zika Virus , Zika Virus Infection/diagnosis , Zika Virus Infection/therapy , Zika Virus Infection/transmission , Aedes
10.
s.l; s.n; 2018. 25 p. ilu, tab, graf.
Non-conventional in English | HANSEN, Sec. Est. Saúde SP, Hanseníase Leprosy, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1025298

ABSTRACT

Leprosy is an infectious disease caused by Mycobacterium leprae and frequently resulting in irreversible deformities and disabilities. Ticks play an important role in infectious disease transmission due to their low host specificity, worldwide distribution, and the biological ability to support transovarial transmission of a wide spectrum of pathogens, including viruses, bacteria and protozoa. To investigate a possible role for ticks as vectors of leprosy, we assessed transovarial transmission of M. leprae in artificially-fed adult female Amblyomma sculptum ticks, and infection and growth of M. leprae in tick cell lines. Our results revealed M. leprae RNA and antigens persisting in the midgut and present in the ovaries of adult female A. sculptum at least 2 days after oral infection, and present in their progeny (eggs and larvae), which demonstrates the occurrence of transovarial transmission of this pathogen. Infected tick larvae were able to inoculate viable bacilli during blood-feeding on a rabbit. Moreover, following inoculation with M. leprae, the Ixodes scapularis embryo-derived tick cell line IDE8 supported a detectable increase in the number of bacilli for at least 20 days, presenting a doubling time of approximately 12 days. As far as we know, this is the first in vitro cellular system able to promote growth of M. leprae. Finally, we successfully transformed a clinical M. leprae isolate by inserting the reporter plasmid pCHERRY3; transformed bacteria infected and grew in IDE8 cells over a 2-month period. Taken together, our data not only support the hypothesis that ticks may have the potential to act as a reservoir and/or vector of leprosy, but also suggest the feasibility of technological development of tick cell lines as a tool for large-scale production of M. leprae bacteria, as well as describing for the first time a method for their transformation.


Subject(s)
Humans , Animals , Male , Female , Rabbits , Arachnid Vectors/physiology , Arachnid Vectors/microbiology , Cell Line , Ixodes/physiology , Ixodes/microbiology , Ixodidae/physiology , Ixodidae/microbiology , Leprosy/microbiology , Leprosy/transmission , Mycobacterium leprae/physiology , Mycobacterium leprae/genetics
11.
Free Radic Biol Med ; 113: 255-266, 2017 12.
Article in English | MEDLINE | ID: mdl-28993269

ABSTRACT

Reactive oxygen species (ROS) are toxic molecules involved in several biological processes such as cellular signaling, proliferation, differentiation and cell death. Adaptations to oxidative environments are crucial for the success of the colonization of insects by protozoa. Strigomonas culicis is a monoxenic trypanosomatid found in the midgut of mosquitoes and presenting a life cycle restricted to the epimastigote form. Among S. culicis peculiarities, there is an endosymbiotic bacterium in the cytoplasm, which completes essential biosynthetic routes of the host cell and may represent an intermediary evolutive step in organelle origin, thus constituting an interesting model for evolutive researches. In this work, we induced ROS resistance in wild type S. culicis epimastigotes by the incubation with increasing concentrations of hydrogen peroxide (H2O2), and compared the oxidative and energetic metabolisms among wild type, wild type-H2O2 resistant and aposymbiotic strains. Resistant protozoa were less sensitive to the oxidative challenge and more dependent on oxidative phosphorylation, which was demonstrated by higher oxygen consumption and mitochondrial membrane potential, increased activity of complexes II-III and IV, increased complex II gene expression and higher ATP production. Furthermore, the wild type-H2O2 resistant strain produced reduced ROS levels and showed lower lipid peroxidation, as well as an increase in gene expression of antioxidant enzymes and thiol-dependent peroxidase activity. On the other hand, the aposymbiotic strain showed impaired mitochondrial function, higher H2O2 production and deficient antioxidant response. The induction of H2O2 resistance also led to a remarkable increase in Aedes aegypti midgut binding in vitro and colonization in vivo, indicating that both the pro-oxidant environment in the mosquito gut and the oxidative stress susceptibility regulate S. culicis population in invertebrates.


Subject(s)
Aedes/parasitology , Electron Transport Chain Complex Proteins/genetics , Energy Metabolism/genetics , Host-Parasite Interactions , Hydrogen Peroxide/pharmacology , Protozoan Proteins/genetics , Trypanosomatina/metabolism , Adenosine Triphosphate/biosynthesis , Animals , Antioxidants/metabolism , Betaproteobacteria/metabolism , Biological Evolution , Drug Resistance , Electron Transport Chain Complex Proteins/metabolism , Gastrointestinal Tract/parasitology , Gene Expression Regulation , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/metabolism , Oxidation-Reduction , Oxidative Stress , Protozoan Proteins/metabolism , Signal Transduction , Symbiosis/physiology , Trypanosomatina/drug effects , Trypanosomatina/genetics , Trypanosomatina/microbiology
12.
PLoS One ; 12(7): e0181678, 2017.
Article in English | MEDLINE | ID: mdl-28732048

ABSTRACT

Dengue represents a serious threat to human health, with billions of people living at risk of the disease. Wolbachia pipientis is a bacterial endosymbiont common to many insect species. Wolbachia transinfections in mosquito disease vectors have great value for disease control given the bacterium's ability to spread into wild mosquito populations, and to interfere with infections of pathogens, such as dengue virus. Aedes fluviatilis is a mosquito with a widespread distribution in Latin America, but its status as a dengue vector has not been clarified. Ae. fluviatilis is also naturally infected by the wFlu Wolbachia strain, which has been demonstrated to enhance infection with the avian malarial parasite Plasmodium gallinaceum. We performed experimental infections of Ae. fluviatilis with DENV-2 and DENV-3 isolates from Brazil via injection or oral feeding to provide insight into its competence for the virus. We also examined the effect of the native Wolbachia infection on the virus using a mosquito line where the wFlu infection had been cleared by antibiotic treatment. Through RT-qPCR, we observed that Ae. fluviatilis could become infected with both viruses via either method of infection, although at a lower rate than Aedes aegypti, the primary dengue vector. We then detected DENV-2 and DENV-3 in the saliva of injected mosquitoes, and observed that injection of DENV-3-infected saliva produced subsequent infections in naïve Ae. aegypti. However, across our data we observed no difference in prevalence of infection and viral load between Wolbachia-infected and -uninfected mosquitoes, suggesting that there is no effect of wFlu on dengue virus. Our results highlight that Ae. fluviatilis could potentially serve as a dengue vector under the right circumstances, although further testing is required to determine if this occurs in the field.


Subject(s)
Aedes/microbiology , Aedes/virology , Culicidae/microbiology , Culicidae/virology , Dengue Virus/pathogenicity , Wolbachia/pathogenicity , Animals , Brazil , Dengue/virology , Gram-Negative Bacterial Infections/microbiology , Insect Vectors/microbiology , Insect Vectors/virology , Pest Control, Biological/methods , Saliva/microbiology , Saliva/virology , Symbiosis/physiology , Viral Load/physiology , Virus Replication/physiology
13.
PLoS Negl Trop Dis ; 11(4): e0005525, 2017 04.
Article in English | MEDLINE | ID: mdl-28379952

ABSTRACT

BACKGROUND: Digestion of blood in the midgut of Aedes aegypti results in the release of pro-oxidant molecules that can be toxic to the mosquito. We hypothesized that after a blood meal, the antioxidant capacity of the midgut is increased to protect cells against oxidative stress. Concomitantly, pathogens present in the blood ingested by mosquitoes, such as the arboviruses Dengue and Zika, also have to overcome the same oxidative challenge, and the antioxidant program induced by the insect is likely to influence infection status of the mosquito and its vectorial competence. METHODOLOGY/PRINCIPAL FINDINGS: We found that blood-induced catalase mRNA and activity in the midgut peaked 24 h after feeding and returned to basal levels after the completion of digestion. RNAi-mediated silencing of catalase (AAEL013407-RB) reduced enzyme activity in the midgut epithelia, increased H2O2 leakage and decreased fecundity and lifespan when mosquitoes were fed H2O2. When infected with Dengue 4 and Zika virus, catalase-silenced mosquitoes showed no alteration in infection intensity (number of plaque forming units/midgut) 7 days after the infectious meal. However, catalase knockdown reduced Dengue 4, but not Zika, infection prevalence (percent of infected midguts). CONCLUSION/SIGNIFICANCE: Here, we showed that blood ingestion triggers an antioxidant response in the midgut through the induction of catalase. This protection facilitates the establishment of Dengue virus in the midgut. Importantly, this mechanism appears to be specific for Dengue because catalase silencing did not change Zika virus prevalence. In summary, our data suggest that redox balance in the midgut modulates mosquito vectorial competence to arboviral infections.


Subject(s)
Aedes/enzymology , Catalase/metabolism , Dengue Virus/physiology , Dengue/transmission , Insect Vectors/enzymology , Zika Virus/physiology , Aedes/physiology , Aedes/virology , Animals , Blood , Catalase/genetics , Female , Gastrointestinal Tract/enzymology , Gastrointestinal Tract/virology , Hydrogen Peroxide/analysis , Hydrogen Peroxide/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Vectors/physiology , Insect Vectors/virology , Oxidative Stress , RNA Interference , Rabbits , Zika Virus Infection/transmission
14.
Parasit Vectors ; 10(1): 103, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28231846

ABSTRACT

BACKGROUND: Aedes aegypti is the main vector of important arboviruses such as dengue, Zika and chikungunya. During infections mosquitoes can activate the immune pathways Toll, IMD and JAK/STAT to limit pathogen replication. RESULTS: Here, we evaluate the immune response profile of Ae. aegypti against Sindbis virus (SINV). We analyzed gene expression of components of Toll, IMD and JAK/STAT pathways and showed that a blood meal and virus infection upregulated aaREL2 in a microbiota-dependent fashion, since this induction was prevented by antibiotic. The presence of the microbiota activates IMD and impaired the replication of SINV in the midgut. Constitutive activation of the IMD pathway, by Caspar depletion, leads to a decrease in microbiota levels and an increase in SINV loads. CONCLUSION: Together, these results suggest that a blood meal is able to activate innate immune pathways, through a nutrient induced growth of microbiota, leading to upregulation of aaREL2 and IMD activation. Microbiota levels seemed to have a reciprocal interaction, where the proliferation of the microbiota activates IMD pathway that in turn controls bacterial levels, allowing SINV replication in Ae. aegypti mosquitoes. The activation of the IMD pathway seems to have an indirect effect in SINV levels that is induced by the microbiota.


Subject(s)
Aedes/virology , Gene Expression Regulation/immunology , Microbiota/physiology , Sindbis Virus/physiology , Aedes/immunology , Animals , Anti-Bacterial Agents/pharmacology , Host-Pathogen Interactions , Microbiota/drug effects , Penicillins/pharmacology , Streptomycin/pharmacology , Transcriptome
15.
Environ Sci Pollut Res Int ; 23(24): 25210-25217, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27680008

ABSTRACT

The identification of fecal pollution in aquatic ecosystems is one of the requirements to assess the possible risks to human health. In this report, physicochemical parameters, Escherichia coli enumeration and Methanobrevibacter smithii nifH gene quantification were conducted at 13 marine waters in the coastal beaches of Rio de Janeiro, Brazil. The pH, turbidity, dissolved oxygen, temperature, and conductivity, carried out by mobile equipment, revealed varied levels due to specific conditions of the beaches. The bioindicators' enumerations were done by defined substrate method, conventional, and real-time PCR. Six marine beach sites (46 %) presenting E. coli levels in compliance with Brazilian water quality guidelines (<2500 MPN/100 mL) showed nifH gene between 5.7 × 109 to 9.5 × 1011 copies. L-1 revealing poor correlation between the two approaches. To our knowledge, this is the first inquiry in qPCR using nifH gene as a biomarker of human-specific sources of sewage pollution in marine waters in Brazil. In addition, our data suggests that alternative indicator nifH gene could be used, in combination with other markers, for source tracking studies to measure the quality of marine ecosystems thereby contributing to improved microbial risk assessment.


Subject(s)
Bathing Beaches/statistics & numerical data , Escherichia coli/isolation & purification , Genes, Archaeal , Methanobrevibacter/isolation & purification , Water Microbiology , Brazil , Feces , Humans , Methanobrevibacter/genetics , Real-Time Polymerase Chain Reaction , Sewage/analysis , Water Quality
16.
Curr Biol ; 26(16): 2188-93, 2016 08 22.
Article in English | MEDLINE | ID: mdl-27476595

ABSTRACT

Blood-feeding arthropods are vectors of infectious diseases such as dengue, Zika, Chagas disease, and malaria [1], and vector control is essential to limiting disease spread. Because these arthropods ingest very large amounts of blood, a protein-rich meal, huge amounts of amino acids are produced during digestion. Previous work on Rhodnius prolixus, a vector of Chagas disease, showed that, among all amino acids, only tyrosine degradation enzymes were overexpressed in the midgut compared to other tissues [2]. Here we demonstrate that tyrosine detoxification is an essential trait in the life history of blood-sucking arthropods. We found that silencing Rhodnius tyrosine aminotransferase (TAT) and 4-hydroxyphenylpyruvate dioxygenase (HPPD), the first two enzymes of the phenylalanine/tyrosine degradation pathway, caused the death of insects after a blood meal. This was confirmed by using the HPPD inhibitor mesotrione, which selectively killed hematophagous arthropods but did not affect non-hematophagous insects. In addition, mosquitoes and kissing bugs died after feeding on mice that had previously received a therapeutic effective oral dose (1 mg/kg) of nitisinone, another HPPD inhibitor used in humans for the treatment of tyrosinemia type I [3]. These findings indicate that HPPD (and TAT) can be a target for the selective control of blood-sucking disease vector populations. Because HPPD inhibitors are extensively used as herbicides and in medicine, these compounds may provide an alternative less toxic to humans and more environmentally friendly than the conventional neurotoxic insecticides that are currently used, with the ability to affect only hematophagous arthropods.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase/genetics , Gene Silencing , Insect Proteins/genetics , Rhodnius/genetics , Tyrosine Transaminase/genetics , Tyrosine/metabolism , 4-Hydroxyphenylpyruvate Dioxygenase/metabolism , Animals , Female , Inactivation, Metabolic , Insect Proteins/metabolism , Male , Nymph/genetics , Nymph/growth & development , Nymph/metabolism , Rhodnius/growth & development , Rhodnius/metabolism , Tyrosine Transaminase/metabolism
17.
PLoS One ; 11(5): e0156037, 2016.
Article in English | MEDLINE | ID: mdl-27203082

ABSTRACT

Leprosy is a chronic dermato-neurological disease caused by infection with Mycobacterium leprae. In 2013 almost 200,000 new cases of leprosy were detected around the world. Since the first symptoms take from years to decades to appear, the total number of asymptomatic patients is impossible to predict. Although leprosy is one of the oldest records of human disease, the mechanisms involved with its transmission and epidemiology are still not completely understood. In the present work, we experimentally investigated the hypothesis that the mosquitoes Aedes aegypti and Culex quinquefasciatus and the hemiptera Rhodnius prolixus act as leprosy vectors. By means of real-time PCR quantification of M. leprae 16SrRNA, we found that M. leprae remained viable inside the digestive tract of Rhodnius prolixus for 20 days after oral infection. In contrast, in the gut of both mosquito species tested, we were not able to detect M. leprae RNA after a similar period of time. Inside the kissing bug Rhodnius prolixus digestive tract, M. leprae was initially restricted to the anterior midgut, but gradually moved towards the hindgut, in a time course reminiscent of the life cycle of Trypanosoma cruzi, a well-known pathogen transmitted by this insect. The maintenance of M. leprae infectivity inside the digestive tract of this kissing bug is further supported by successful mice footpad inoculation with feces collected 20 days after infection. We conclude that Rhodnius prolixus defecate infective M. leprae, justifying the evaluation of the presence of M. leprae among sylvatic and domestic kissing bugs in countries endemic for leprosy.


Subject(s)
Leprosy/microbiology , Leprosy/transmission , Mycobacterium leprae/pathogenicity , Rhodnius/microbiology , Animals , Feces/microbiology , Humans , Leprosy/genetics , Microscopy, Fluorescence , RNA, Ribosomal, 16S/genetics , Real-Time Polymerase Chain Reaction
18.
Sci Rep ; 6: 19928, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26887863

ABSTRACT

In mammals, lipid droplets (LDs) are ubiquitous organelles that modulate immune and inflammatory responses through the production of lipid mediators. In insects, it is unknown whether LDs play any role during the development of immune responses. We show that Aedes aegypti Aag2 cells - an immune responsive cell lineage - accumulates LDs when challenged with Enterobacter cloacae, Sindbis, and Dengue viruses. Microarray analysis of Aag2 challenged with E.cloacae or infected with Dengue virus revealed high transcripts levels of genes associated with lipid storage and LDs biogenesis, correlating with the increased LDs numbers in those conditions. Similarly, in mosquitoes, LDs accumulate in midgut cells in response to Serratia marcescens and Sindbis virus or when the native microbiota proliferates, following a blood meal. Also, constitutive activation of Toll and IMD pathways by knocking-down their respective negative modulators (Cactus and Caspar) increases LDs numbers in the midgut. Our results show for the first time an infection-induced LDs accumulation in response to both bacterial and viral infections in Ae. Aegypti, and we propose a role for LDs in mosquito immunity. These findings open new venues for further studies in insect immune responses associated with lipid metabolism.


Subject(s)
Aedes , Dengue Virus/immunology , Enterobacter cloacae/immunology , Lipid Droplets/immunology , Lipid Metabolism/immunology , Aedes/immunology , Aedes/microbiology , Aedes/virology , Animals , Cell Line , Serratia marcescens/immunology , Sindbis Virus/immunology
19.
s.l; s.n; 2016. 14 p. ilus, tab, graf.
Non-conventional in English | Sec. Est. Saúde SP, HANSEN, Hanseníase Leprosy, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1095232

ABSTRACT

Leprosy is a chronic dermato-neurological disease caused by infection with Mycobacterium leprae. In 2013 almost 200,000 new cases of leprosy were detected around the world. Since the first symptoms take from years to decades to appear, the total number of asymptomatic patients is impossible to predict. Although leprosy is one of the oldest records of human disease, the mechanisms involved with its transmission and epidemiology are still not completely understood. In the present work, we experimentally investigated the hypothesis that the mosquitoes Aedes aegypti and Culex quinquefasciatus and the hemiptera Rhodnius prolixus act as leprosy vectors. By means of real-time PCR quantification of M. leprae 16SrRNA, we found that M. leprae remained viable inside the digestive tract of Rhodnius prolixus for 20 days after oral infection. In contrast, in the gut of both mosquito species tested, we were not able to detect M. leprae RNA after a similar period of time. Inside the kissing bug Rhodnius prolixus digestive tract, M. leprae was initially restricted to the anterior midgut, but gradually moved towards the hindgut, in a time course reminiscent of the life cycle of Trypanosoma cruzi, a well-known pathogen transmitted by this insect. The maintenance of M. leprae infectivity inside the digestive tract of this kissing bug is further supported by successful mice footpad inoculation with feces collected 20 days after infection. We conclude that Rhodnius prolixus defecate infective M. leprae, justifying the evaluation of the presence of M. leprae among sylvatic and domestic kissing bugs in countries endemic for leprosy.


Subject(s)
Humans , Animals , Rhodnius/microbiology , RNA, Ribosomal, 16S/genetics , Feces/microbiology , Real-Time Polymerase Chain Reaction , Leprosy/genetics , Leprosy/microbiology , Leprosy/transmission , Microscopy, Fluorescence , Mycobacterium leprae/pathogenicity
20.
Proc Natl Acad Sci U S A ; 112(48): 14936-41, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26627243

ABSTRACT

Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (∼ 702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immune-deficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods.


Subject(s)
Adaptation, Physiological/genetics , Chagas Disease , Host-Parasite Interactions/genetics , Insect Vectors , Rhodnius , Trypanosoma cruzi/physiology , Animals , Base Sequence , Gene Transfer, Horizontal , Humans , Insect Vectors/genetics , Insect Vectors/parasitology , Molecular Sequence Data , Rhodnius/genetics , Rhodnius/parasitology , Wolbachia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...