Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 11(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34544133

ABSTRACT

With increased demand on freshwater resources for agriculture, it is imperative that more water-use efficient crops are developed. Leaf stable carbon isotope composition, δ13C, is a proxy for transpiration efficiency and a possible tool for breeders, but the underlying mechanisms effecting δ13C in C4 plants are not known. It has been suggested that differences in specific leaf area (SLA), which potentially reflects variation in internal CO2 diffusion, can impact leaf δ13C. Furthermore, although it is known that water movement is important for elemental uptake, it is not clear how manipulation of transpiration for increased water-use efficiency may impact nutrient accumulation. Here, we characterize the genetic architecture of leaf δ13C and test its relationship to SLA and the ionome in five populations of maize. Five significant QTL for leaf δ13C were identified, including novel QTL as well as some that were identified previously in maize kernels. One of the QTL regions contains an Erecta-like gene, the ortholog of which has been shown to regulate transpiration efficiency and leaf δ13C in Arabidopsis. QTL for δ13C were located in the same general chromosome region, but slightly shifted, when comparing data from two different years. Our data does not support a relationship between δ13C and SLA, and of the 19 elements analyzed, only a weak correlation between molybdenum and δ13C was detected. Together these data add to the genetic understanding of leaf δ13C in maize and suggest that improvements to plant water use may be possible without significantly influencing elemental homeostasis.


Subject(s)
Carbon , Zea mays , Carbon Isotopes , Plant Leaves/genetics , Water , Zea mays/genetics
2.
Glob Chang Biol ; 25(12): 4327-4338, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31571358

ABSTRACT

Ozone is the most damaging air pollutant to crops, currently reducing Midwest US maize production by up to 10%, yet there has been very little effort to adapt germplasm for ozone tolerance. Ozone enters plants through stomata, reacts to form reactive oxygen species in the apoplast and ultimately decreases photosynthetic C gain. In this study, 10 diverse inbred parents were crossed in a half-diallel design to create 45 F1 hybrids, which were tested for ozone response in the field using free air concentration enrichment (FACE). Ozone stress increased the heritability of photosynthetic traits and altered genetic correlations among traits. Hybrids from parents Hp301 and NC338 showed greater sensitivity to ozone stress, and disrupted relationships among photosynthetic traits. The physiological responses underlying sensitivity to ozone differed in hybrids from the two parents, suggesting multiple mechanisms of response to oxidative stress. FACE technology was essential to this evaluation because genetic variation in photosynthesis under elevated ozone was not predictable based on performance at ambient ozone. These findings suggest that selection under elevated ozone is needed to identify deleterious alleles in the world's largest commodity crop.


Subject(s)
Ozone , Photosynthesis , Environmental Pollution , Genetic Variation , Plant Leaves , Zea mays
3.
Plant Cell Environ ; 40(12): 3088-3100, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29044553

ABSTRACT

Exposure to elevated tropospheric ozone concentration ([O3 ]) accelerates leaf senescence in many C3 crops. However, the effects of elevated [O3 ] on C4 crops including maize (Zea mays L.) are poorly understood in terms of physiological mechanism and genetic variation in sensitivity. Using free air gas concentration enrichment, we investigated the photosynthetic response of 18 diverse maize inbred and hybrid lines to season-long exposure to elevated [O3 ] (~100 nl L-1 ) in the field. Gas exchange was measured on the leaf subtending the ear throughout the grain filling period. On average over the lifetime of the leaf, elevated [O3 ] led to reductions in photosynthetic CO2 assimilation of both inbred (-22%) and hybrid (-33%) genotypes. There was significant variation among both inbred and hybrid lines in the sensitivity of photosynthesis to elevated [O3 ], with some lines showing no change in photosynthesis at elevated [O3 ]. Based on analysis of inbred line B73, the reduced CO2 assimilation at elevated [O3 ] was associated with accelerated senescence decreasing photosynthetic capacity and not altered stomatal limitation. These findings across diverse maize genotypes could advance the development of more O3 tolerant maize and provide experimental data for parameterization and validation of studies modeling how O3 impacts crop performance.


Subject(s)
Carbon Dioxide/metabolism , Ozone/pharmacology , Photosynthesis/physiology , Zea mays/physiology , Circadian Rhythm , Genotype , Photosynthesis/radiation effects , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/physiology , Plant Stomata/drug effects , Plant Stomata/genetics , Plant Stomata/physiology , Plant Transpiration/physiology , Plant Transpiration/radiation effects , Seasons , Zea mays/drug effects , Zea mays/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...