Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 921: 171086, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38382601

ABSTRACT

Biofilms, constituting over 95 % of the biomass in drinking water distribution systems, form an ecosystem impacting both the aesthetic and microbiological quality of water. This study investigates the microbiome of biofilms within a real-scale drinking water distribution system in eastern Spain, utilizing amplicon-based metagenomics. Forty-one biofilm samples underwent processing and sequencing to analyze both bacterial and eukaryotic microbiomes, with an assessment of active biomass. Genus-level analysis revealed considerable heterogeneity, with Desulfovibrio, Ralstonia, Bradyrhizobium, Methylocystis, and Bacillus identified as predominant genera. Notably, bacteria associated with corrosion processes, including Desulfovibrio, Sulfuricella, Hyphomicrobium, and Methylobacterium, were prevalent. Potentially pathogenic bacteria such as Helicobacter, Pseudomonas, and Legionella were also detected. Among protozoa, Opisthokonta and Archaeplastida were the most abundant groups in biofilm samples, with potential pathogenic eukaryotes (Acanthamoeba, Naegleria, Blastocystis) identified. Interestingly, no direct correlation between microbiota composition and pipe materials was observed. The study suggests that the usual concentration of free chlorine in bulk water proved insufficient to prevent the presence of undesirable bacteria and protozoa in biofilms, which exhibited a high concentration of active biomass.


Subject(s)
Drinking Water , Microbiota , Water Quality , Bacteria , Biofilms , Water Supply , Water Microbiology
2.
Sci Total Environ ; 754: 142016, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33254950

ABSTRACT

Drinking water distribution systems host extensive microbiomes with diverse biofilm communities regardless of treatment, disinfection, or operational practices. In Mediterranean countries higher temperatures can accelerate reactions and microbial growth that may increase aesthetic water quality issues, particularly where material deposits can develop as a result of net zero flows within looped urban networks. This study investigated the use of flow and turbidity monitoring to hydraulically manage mobilisation of pipe wall biofilms and associated material from the Mediterranean city of Valencia (Spain). Pipe sections of different properties were subjected to controlled incremental flushing with monitoring and sample collection for physico-chemical and DNA analysis with Illumina sequencing of bacterial and fungal communities. A core microbial community was detected throughout the network with microorganisms like Pseudomonas, Aspergillus or Alternaria increasing during flushing, indicating greater abundance in underlying and more consolidated material layers. Bacterial and fungal communities were found to be highly correlated, with bacteria more diverse and dynamic during flushing whilst fungi were more dominant and less variable between sampling sites. Results highlight that water quality management can be achieved through hydraulic strategies yet understanding community dynamics, including the fungal component, will be key to maintaining safe and ultimately beneficial microbiomes in drinking water distribution systems.


Subject(s)
Cyprinodontiformes , Drinking Water , Mycobiome , Animals , Biofilms , Spain , Water Microbiology , Water Quality , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...