Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Nat Protoc ; 18(2): 340-373, 2023 02.
Article in English | MEDLINE | ID: mdl-36418397

ABSTRACT

Neurological disorders, including spinal cord injury, result in hemodynamic instability due to the disruption of supraspinal projections to the sympathetic circuits located in the spinal cord. We recently developed a preclinical model that allows the identification of the topology and dynamics through which sympathetic circuits modulate hemodynamics, supporting the development of a neuroprosthetic baroreflex that precisely controls blood pressure in rats, monkeys and humans with spinal cord injuries. Here, we describe the continuous monitoring of arterial blood pressure and sympathetic nerve activity over several months in preclinical models of chronic neurological disorders using commercially available telemetry technologies, as well as optogenetic and neuronal tract-tracing procedures specifically adapted to the sympathetic circuitry. Using a blueprint to construct a negative-pressure chamber, the approach enables the reproduction, in rats, of well-controlled and reproducible episodes of hypotension-mimicking orthostatic challenges already used in humans. Blood pressure variations can thus be directly induced and linked to the molecular, functional and anatomical properties of specific neurons in the brainstem, spinal cord and ganglia. Each procedure can be completed in under 2 h, while the construction of the negative-pressure chamber requires up to 1 week. With training, individuals with a basic understanding of cardiovascular physiology, engineering or neuroscience can collect longitudinal recordings of hemodynamics and sympathetic nerve activity over several months.


Subject(s)
Hemodynamics , Spinal Cord Injuries , Humans , Rats , Animals , Hemodynamics/physiology , Blood Pressure/physiology , Spinal Cord/physiology , Sympathetic Nervous System/physiology
2.
Circ Res ; 131(12): 952-961, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36349758

ABSTRACT

BACKGROUND: Neurovascular coupling (NVC) is a key process in cerebral blood flow regulation. NVC ensures adequate brain perfusion to changes in local metabolic demands. Neuronal nitric oxide synthase (nNOS) is suspected to be involved in NVC; however, this has not been tested in humans. Our objective was to investigate the effects of nNOS inhibition on NVC in humans. METHODS: We performed a 3-visit partially randomized, double-blinded, placebo-controlled, crossover study in 12 healthy subjects. On each visit, subjects received an intravenous infusion of either S-methyl-L-thiocitrulline (a selective nNOS-inhibitor), 0.9% saline (placebo control), or phenylephrine (pressor control). The NVC assessment involved eliciting posterior circulation hyperemia through visual stimulation while measuring posterior and middle cerebral arteries blood velocity. RESULTS: nNOS inhibition blunted the rapidity of the NVC response versus pressor control, evidenced by a reduced initial rise in mean posterior cerebral artery velocity (-3.3% [-6.5, -0.01], P=0.049), and a reduced rate of increase (ie, acceleration) in posterior cerebral artery velocity (slope reduced -4.3% [-8.5, -0.1], P=0.045). The overall magnitude of posterior cerebral artery response relative to placebo control or pressor control was not affected. Changes in BP parameters were well-matched between the S-methyl-L-thiocitrulline and pressor control arms. CONCLUSIONS: Neuronal NOS plays a role in dynamic cerebral blood flow control in healthy adults, particularly the rapidity of the NVC response to visual stimulation. This work opens the way to further investigation of the role of nNOS in conditions of impaired NVC, potentially revealing a therapeutic target.


Subject(s)
Enzyme Inhibitors , Neurovascular Coupling , Adult , Humans , Cerebrovascular Circulation , Cross-Over Studies , Enzyme Inhibitors/pharmacology , Nitric Oxide , Nitric Oxide Synthase Type I/antagonists & inhibitors
3.
Am J Physiol Heart Circ Physiol ; 323(6): H1311-H1322, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36367686

ABSTRACT

Cervical spinal cord injury (SCI) leads to autonomic cardiovascular dysfunction that underlies the three- to fourfold elevated risk of cardiovascular disease in this population. Reduced common carotid artery (CCA) dilatory responsiveness during the cold-pressor test (CPT) is associated with greater cardiovascular disease risk and progression. The cardiovascular and CCA responses to the CPT may provide insight into cardiovascular autonomic dysfunction and cardiovascular disease risk in individuals with cervical SCI. Here, we used CPT to perturb the autonomic nervous system in 14 individuals with cervical SCI and 12 uninjured controls, while measuring cardiovascular responses and CCA diameter. The CCA diameter responses were 55% impaired in those with SCI compared with uninjured controls (P = 0.019). The CCA flow, velocity, and shear response to CPT were reduced in SCI by 100% (P < 0.001), 113% (P = 0.001), and 125% (P = 0.002), respectively. The association between mean arterial pressure and CCA dilation observed in uninjured individuals (r = 0.54, P = 0.004) was absent in the SCI group (r = 0.22, P = 0.217). Steady-state systolic blood pressure (P = 0.020), heart rate (P = 0.003), and cardiac contractility (P < 0.001) were reduced in those with cervical SCI, whereas total peripheral resistance was increased compared with uninjured controls (P = 0.042). Relative cerebral blood velocity responses to CPT were increased in the SCI group and reduced in controls (middle cerebral artery, P = 0.010; posterior cerebral artery, P = 0.026). The CCA and cardiovascular responsiveness to CPT are impaired in those with cervical SCI.NEW & NOTEWORTHY This is the first study demonstrating that CCA responses during CPT are suppressed in SCI. Specifically, CCA diameter, flow, velocity, and shear rate were reduced. The relationship between changes in MAP and CCA dilatation in response to CPT was absent in individuals with SCI, despite similar cardiovascular activation between SCI and uninjured controls. These findings support the notion of elevated cardiovascular disease risk in SCI and that the cardiovascular responses to environmental stimuli are impaired.


Subject(s)
Autonomic Nervous System Diseases , Cardiovascular Diseases , Cervical Cord , Spinal Cord Injuries , Humans , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/etiology , Carotid Artery, Common , Carotid Arteries , Middle Cerebral Artery , Spinal Cord Injuries/complications
4.
Spinal Cord ; 60(10): 903-910, 2022 10.
Article in English | MEDLINE | ID: mdl-35701485

ABSTRACT

STUDY DESIGN: Cohort prospective study. OBJECTIVES: Epidural spinal cord stimulation (eSCS) improves volitional motor and autonomic function after spinal cord injury (SCI). While eSCS has an established history of safety for chronic pain, it remains unclear if eSCS in the SCI population presents the same risk profile. We aimed to assess safety and autonomic monitoring data for the first 14 participants in the E-STAND trial. SETTING: Hennepin County Medical Center, Minneapolis and Minneapolis Veterans Affairs Medical Center, Minnesota, USA. METHODS: Monthly follow-up visits assessed surgical and medical device-related safety outcomes as well as stimulation usage. Beat-by-beat blood pressure (BP) and continuous electrocardiogram data were collected during head-up tilt-table testing with and without eSCS. RESULTS: All participants had a motor-complete SCI. Mean (SD) age and time since injury were 38 (10) and 7 (5) years, respectively. There were no surgical complications but one device malfunction 4 months post implantation. Stimulation was applied for up to 23 h/day, across a broad range of parameters: frequency (18-700 Hz), pulse width (100-600 µs), and amplitude (0.4-17 mA), with no adverse events reported. Tilt-table testing with eSCS demonstrated no significant increases in the incidence of elevated systolic BP or a greater frequency of arrhythmias. CONCLUSIONS: eSCS to restore autonomic and volitional motor function following SCI has a similar safety profile as when used to treat chronic pain, despite the prevalence of significant comorbidities and the wide variety of stimulation parameters tested.


Subject(s)
Cardiovascular Diseases , Chronic Pain , Spinal Cord Injuries , Spinal Cord Stimulation , Cardiovascular Diseases/complications , Humans , Incidence , Prospective Studies , Spinal Cord , Spinal Cord Injuries/complications , Spinal Cord Injuries/epidemiology , Spinal Cord Injuries/therapy , Spinal Cord Stimulation/adverse effects
5.
Sci Rep ; 12(1): 4405, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35292668

ABSTRACT

Physical activity is a powerful modifiable risk factor for disease and mortality. Physical activity levels in people with spinal cord injury (SCI) have not been quantified relative to uninjured individuals in a large population-based sample. We aimed to quantify and compare physical activity in people with and without SCI, and to examine the associations between physical activity, lifestyle, and socioeconomic factors. The 2010 Canadian Community Health Survey (n > 57,000) was used, which includes three measures that assess physical activity levels (i.e., leisure time activity frequency, leisure time activity intensity, and transportation time activity intensity). Bivariable and multivariable logistic regressions were performed and odds ratios (ORs) with corresponding 95% confidence intervals (CIs) were estimated. The odds of physical activity in people with SCI were 0.43 (95% CI 0.3-0.61), 0.53 (95% CI 0.36-0.75), and 0.42 (95% CI 0.28-0.61), across the three measures of physical activity, respectively. These differences persisted after adjustment for lifestyle, comorbidities, and socioeconomic factors. Physical activity is reduced in the SCI population compared with the general population. This knowledge is important to direct future research and guide the allocation of health care resources.


Subject(s)
Leisure Activities , Spinal Cord Injuries , Canada/epidemiology , Cross-Sectional Studies , Exercise , Humans , Spinal Cord Injuries/epidemiology
6.
Spinal Cord ; 60(5): 444-450, 2022 05.
Article in English | MEDLINE | ID: mdl-35347266

ABSTRACT

STUDY DESIGN: Retrospective cross-sectional epidemiological study. OBJECTIVES: Previous studies have quantified longitudinal psychological morbidity in individuals with spinal cord injury (SCI) relative to uninjured individuals. However, there is limited information regarding how lifestyle and socioeconomic factors are associated with mental health conditions in individuals with SCI. This study aims to quantify and compare mental health and suicidal thoughts in people with and without SCI, and examine the associations between mental health, suicidal thoughts, sex, age, lifestyle, and socioeconomic factors. SETTING: Canada. METHODS: The 2010 Canadian Community Health Survey (n > 40,000) was used, which includes several measures assessing mental health and suicidal thoughts. Bivariate and multivariate logistic regressions were performed and odds ratios with corresponding 95% confidence intervals were estimated. Sensitivity analyses were performed to evaluate the effect of covariates on reported effect sizes. RESULTS: People with SCI had higher odds of having mood (3.6) and anxiety disorders (2.5), suicidal thoughts (2.3), self-perceived stress (1.9), and depression (4.4); in addition to lower odds of having good self-perceived mental health (0.24) and satisfaction with life (0.25). These differences persisted after adjusting for age, sex, lifestyle, and socioeconomic factors. Lower household income, fruit and vegetable consumption, and physical activity levels, and increased smoking use were associated with poorer mental health in individuals with SCI. CONCLUSIONS: Mental health is poorer in those with SCI when compared with the general population. Those with SCI exhibit a unique profile of lifestyle and socioeconomic factors that are associated with poorer mental health and increased suicidal thoughts.


Subject(s)
Spinal Cord Injuries , Suicidal Ideation , Canada/epidemiology , Cross-Sectional Studies , Humans , Mental Health , Retrospective Studies , Spinal Cord Injuries/epidemiology , Spinal Cord Injuries/psychology
7.
Appl Physiol Nutr Metab ; 47(3): 269-277, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34739759

ABSTRACT

Individuals with cervical spinal cord injury (SCI) are at an increased risk for cardiovascular disease. Exercise is well-established for preventing cardiovascular disease; however, there are limited straightforward and safe exercise approaches for increasing the activity of the cardiorespiratory system after cervical SCI. The objective of this study was to investigate the cardiorespiratory response to passive leg cycling in people with cervical SCI. Beat-by-beat blood pressure, heart rate, and cerebral blood flow were measured before and throughout 10 minutes of cycling in 11 people with SCI. Femoral artery flow-mediated dilation was also assessed before and immediately after passive cycling. Safety was monitored throughout all study visits. Passive cycling elevated systolic blood pressure (5 ± 2 mm Hg), mean arterial pressure (5 ± 3 mm Hg), stroke volume (2.4 ± 0.8 mL), heart rate (2 ± 1 beats/min) and cardiac output (0.3 ± 0.07 L/min; all p < 0.05). Minute ventilation (0.67 ± 0.23 L/min), tidal volume (70 ± 30 mL) and end-tidal PO2 (2.6 ± 1.23 mm Hg) also increased (all p < 0.05). Endothelial function was improved immediately after exercise (1.62 ± 0.13%, p < 0.01). Passive cycling resulted in an incidence of autonomic dysreflexia. Therefore, passive leg cycling increased the activity of the cardiorespiratory system and improved endothelial function, indicating it may be a beneficial exercise intervention for the cardiovascular and respiratory systems in people with cervical SCI. Novelty: Passive leg cycling increases the activity of the cardiorespiratory system and improves markers of cardiovascular health in cervical SCI. Passive leg cycling exercise is an effective, low-cost, practical, alternative exercise modality for people with cervical SCI.


Subject(s)
Leg , Spinal Cord Injuries , Bicycling , Exercise/physiology , Heart Rate/physiology , Humans , Quadriplegia , Spinal Cord Injuries/complications
8.
Am J Physiol Heart Circ Physiol ; 321(4): H716-H727, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34448635

ABSTRACT

Spinal cord injury (SCI) impairs the cardiovascular responses to postural challenge, leading to the development of orthostatic hypotension (OH). Here, we apply lower body negative pressure (LBNP) to rodents with high-level SCI to demonstrate the usefulness of LBNP as a model for experimental OH studies, and to explore the effect of simulated OH on cardiovascular and cerebrovascular function following SCI. Male Wistar rats (n = 34) were subjected to a sham or T3-SCI surgery and survived into the chronic period postinjury (i.e., 8 wk). Cardiac function was tracked via ultrasound pre- to post-SCI to demonstrate the clinical utility of our model. At study termination, we conducted left-ventricular (LV) catheterization and insonated the middle cerebral artery to investigate the hemodynamic, cardiac, and cerebrovascular response to a mild dose of LBNP that is sufficient to mimic clinically defined OH in rats with T3-SCI but not sham animals. In response to mimicked OH, there was a greater decline in stroke volume, cardiac output, maximal LV pressure, and blood pressure in SCI compared with sham (P < 0.034), whereas heart rate was increased in sham but decreased in SCI (P < 0.029). SCI animals also had an exaggerated reduction in peak, minimum and mean middle cerebral artery flow, for a given change in blood pressure, in response to LBNP (P < 0.033), implying impaired dynamic cerebral autoregulation. Using a preclinical SCI model of OH, we demonstrate that complete high thoracic SCI impairs the cardiac response to OH and disrupts dynamic cerebral autoregulation.NEW & NOTEWORTHY This is the first use of LBNP to interrogate the cardiac and cerebrovascular responses to simulated OH in a preclinical study of SCI. Here, we demonstrate the utility of our simulated OH model and use it to demonstrate that SCI impairs the cardiac response to simulated OH and disrupts dynamic cerebrovascular autoregulation.


Subject(s)
Cerebrovascular Circulation , Hemodynamics , Hypotension, Orthostatic/physiopathology , Middle Cerebral Artery/physiopathology , Spinal Cord Injuries/physiopathology , Spinal Cord/physiopathology , Ventricular Function, Left , Adaptation, Physiological , Animals , Disease Models, Animal , Hypotension, Orthostatic/etiology , Lower Body Negative Pressure , Male , Rats, Wistar , Spinal Cord Injuries/complications , Thoracic Vertebrae , Time Factors
9.
Nature ; 590(7845): 308-314, 2021 02.
Article in English | MEDLINE | ID: mdl-33505019

ABSTRACT

Spinal cord injury (SCI) induces haemodynamic instability that threatens survival1-3, impairs neurological recovery4,5, increases the risk of cardiovascular disease6,7, and reduces quality of life8,9. Haemodynamic instability in this context is due to the interruption of supraspinal efferent commands to sympathetic circuits located in the spinal cord10, which prevents the natural baroreflex from controlling these circuits to adjust peripheral vascular resistance. Epidural electrical stimulation (EES) of the spinal cord has been shown to compensate for interrupted supraspinal commands to motor circuits below the injury11, and restored walking after paralysis12. Here, we leveraged these concepts to develop EES protocols that restored haemodynamic stability after SCI. We established a preclinical model that enabled us to dissect the topology and dynamics of the sympathetic circuits, and to understand how EES can engage these circuits. We incorporated these spatial and temporal features into stimulation protocols to conceive a clinical-grade biomimetic haemodynamic regulator that operates in a closed loop. This 'neuroprosthetic baroreflex' controlled haemodynamics for extended periods of time in rodents, non-human primates and humans, after both acute and chronic SCI. We will now conduct clinical trials to turn the neuroprosthetic baroreflex into a commonly available therapy for people with SCI.


Subject(s)
Baroreflex , Biomimetics , Hemodynamics , Prostheses and Implants , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/therapy , Animals , Disease Models, Animal , Female , Humans , Male , Neural Pathways , Primates , Rats , Rats, Inbred Lew , Sympathetic Nervous System/cytology , Sympathetic Nervous System/physiology
10.
Exp Physiol ; 106(1): 139-150, 2021 01.
Article in English | MEDLINE | ID: mdl-32421248

ABSTRACT

NEW FINDINGS: What is the central question of this study? We assessed the utility of a new metric for quantifying ventilatory acclimatization to high altitude, derived from differential ascent and descent steady-state cardiorespiratory variables (i.e. hysteresis). Furthermore, we aimed to investigate whether the magnitude of cardiorespiratory hysteresis was associated with the development of acute mountain sickness. What is the main finding and its importance? Hysteresis in steady-state cardiorespiratory variables quantifies ventilatory acclimatization to high altitude. The magnitude of cardiorespiratory hysteresis during ascent to and descent from high altitude was significantly related to the development of symptoms of acute mountain sickness. Hysteresis in steady-state chemoreflex drive can provide a simple, non-invasive method of tracking ventilatory acclimatization to high altitude. ABSTRACT: Maintenance of arterial blood gases is achieved through sophisticated regulation of ventilation, mediated by central and peripheral chemoreflexes. Respiratory chemoreflexes are important during exposure to high altitude owing to the competing influence of hypoxia and hypoxic hyperventilation-mediated hypocapnia on steady-state ventilatory drive. Inter-individual variability exists in ventilatory acclimatization to high altitude, potentially affecting the development of acute mountain sickness (AMS). We aimed to quantify ventilatory acclimatization to high altitude by comparing differential ascent and descent values (i.e. hysteresis) in steady-state cardiorespiratory variables. We hypothesized that: (i) the hysteresis area formed by cardiorespiratory variables during ascent and descent would quantify the magnitude of ventilatory acclimatization; and (ii) larger hysteresis areas would be associated with lower AMS symptom scores during ascent. In 25 healthy, acetazolamide-free trekkers ascending to and descending from 5160 m, cardiorespiratory hysteresis was measured in the partial pressure of end-tidal CO2 , peripheral oxygen saturation, minute ventilation, chemoreceptor stimulus index (end-tidal CO2 /peripheral oxygen saturation) and the calculated steady-state chemoreflex drive (SS-CD; minute ventilation/chemoreceptor stimulus index) using portable devices (capnograph, peripheral pulse oximeter and respirometer, respectively). Symptoms of AMS were assessed daily using the Lake Louise questionnaire. We found that: (i) ascent-descent hysteresis was present in all cardiorespiratory variables; (ii) SS-CD is a valid metric for tracking ventilatory acclimatization to high altitude; and (iii) the highest AMS scores during ascent exhibited a significant, moderate and inverse correlation with the magnitude of SS-CD hysteresis (rs  = -0.408, P = 0.043). We propose that ascent-descent hysteresis is a new and feasible way to quantify ventilatory acclimatization in trekkers during high-altitude exposure.


Subject(s)
Acclimatization/physiology , Altitude Sickness/physiopathology , Altitude , Oxygen Saturation/physiology , Adult , Humans , Hypoxia/physiopathology , Lung/physiopathology , Oxygen/blood
11.
Exp Physiol ; 106(1): 160-174, 2021 01.
Article in English | MEDLINE | ID: mdl-32893898

ABSTRACT

NEW FINDINGS: What is the central question of this study? What is the relative contribution of a putative tonic splenic contraction to the haematological acclimatization process during high altitude ascent in native lowlanders? What is the main finding and its importance? Spleen volume decreased by -14.3% (-15.2 ml) per 1000 m ascent, with an attenuated apnoea-induced [Hb] increase, attesting to a tonic splenic contraction during high altitude ascent. The [Hb]-enhancing function of splenic contraction may contribute to restoring oxygen content early in the acclimatization process at high altitude. ABSTRACT: Voluntary apnoea causes splenic contraction and reductions in heart rate (HR; bradycardia), and subsequent transient increases in haemoglobin concentration ([Hb]). Ascent to high altitude (HA) induces systemic hypoxia and reductions in oxygen saturation ( SpO2 ), which may cause tonic splenic contraction, which may contribute to haematological acclimatization associated with HA ascent. We measured resting cardiorespiratory variables (HR, SpO2 , [Hb]) and resting splenic volume (via ultrasound) during incremental ascent from 1400 m (day 0) to 3440 m (day 3), 4240 m (day 7) and 5160 m (day 10) in non-acclimatized native lowlanders during assent to HA in the Nepal Himalaya. In addition, apnoea-induced responses in HR, SpO2 and splenic volume were measured before and after two separate voluntary maximal apnoeas (A1-A2) at 1400, 3440 and 4240 m. Resting spleen volume decreased -14.3% (-15.2 ml) per 1000 m with ascent, from 140 ± 41 ml (1400 m) to 108 ± 28 ml (3440 m; P > 0.99), 94 ± 22 ml (4240 m; P = 0.009) and 84 ± 28 ml (5160 m; P = 0.029), with concomitant increases in [Hb] from 125 ± 18.3 g l-1 (1400 m) to 128 ± 10.4 g l-1 (3440 m), 138.8 ± 12.7 g l-1 (4240 m) and 157.5 ± 8 g l-1 (5160 m; P = 0.021). Apnoea-induced splenic contraction was 50 ± 15 ml (1400 m), 44 ± 17 ml (3440 m; P > 0.99) and 26 ± 8 ml (4240 m; P = 0.002), but was not consistently associated with increases in [Hb]. The apnoea-induced bradycardia was more pronounced at 3440 m (A1: P = 0.04; A2: P = 0.094) and at 4240 m (A1: P = 0.037 A2: P = 0.006) compared to values at 1400 m. We conclude that hypoxia-induced splenic contraction at rest (a) may contribute to restoring arterial oxygen content through its [Hb]-enhancing contractile function and (b) eliminates further apnoea-induced [Hb] increases in hypoxia. We suggest that tonic splenic contraction may contribute to haematological acclimatization early in HA ascent in humans.


Subject(s)
Altitude , Apnea/physiopathology , Muscle Contraction/physiology , Oxygen Saturation/physiology , Acclimatization/physiology , Adult , Female , Humans , Hypoxia/physiopathology , Male , Oxygen Consumption/physiology
12.
High Alt Med Biol ; 21(1): 20-27, 2020 03.
Article in English | MEDLINE | ID: mdl-31750741

ABSTRACT

Background: High altitude sojourn challenges blood flow regulation in the brain, which may contribute to cognitive dysfunction. Neurovascular coupling (NVC) describes the ability to increase blood flow to working regions of the brain. Effects of high altitude on NVC in frontal regions undergoing cognitive activation are unclear but may be relevant to executive function in high-altitude hypoxia. This study sought to examine the effect of incremental ascent to very high altitude on NVC by measuring anterior cerebral artery (ACA) and middle cerebral artery (MCA) hemodynamic responses to sustained cognitive activity. Materials and Methods: Eight adults (23 ± 7 years, four female) underwent bilateral measurement of ACA and MCA mean velocity and pulsatility index (PI) through transcranial Doppler during a 3-minute Stroop task at 1400, 3440, and 4240 m. Results: Resting MCA and ACA PI decreased with high-altitude hypoxia (p < 0.05). Cognitive activity at all altitudes resulted in similar increases in MCA and ACA mean velocity, and decreases in ACA and MCA PI (p < 0.05 for MCA, p = 0.07 for ACA). No significant altitude-by-Stroop interactions were detected, indicating NVC was stable with increasing altitude. Conclusions: Ascent to very high altitude (4240 m) using an incremental profile that supports partial acclimatization does not appear to disturb (1) increases in cerebral blood velocity and (2) reductions in pulsatility that characterize optimal NVC in frontal regions of the brain during cognitive activity.


Subject(s)
Neurovascular Coupling , Altitude , Blood Flow Velocity , Cerebrovascular Circulation , Cognition , Female , Middle Cerebral Artery/diagnostic imaging , Ultrasonography, Doppler, Transcranial
13.
MMWR Morb Mortal Wkly Rep ; 64(3): 74, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25632957

ABSTRACT

Carriers of the pork tapeworm, Taenia solium, are the sole source of cysticercosis, a parasitic tissue infection. When tapeworm eggs excreted by the carrier are ingested, tapeworm larvae can form cysts. When cysts form in the brain, the condition is called neurocysticercosis and can be especially severe. In Los Angeles County an average of 136 county residents are hospitalized with neurocysticercosis each year. The prevalence of Taenia solium carriage is largely unknown because carriage is asymptomatic, making detection difficult. The identification and treatment of tapeworm carriers is an important public health measure that can prevent additional neurocysticercosis cases.


Subject(s)
Carrier State/diagnosis , Feces/microbiology , Neurocysticercosis/diagnosis , Taenia solium/isolation & purification , Adult , Animals , El Salvador/ethnology , Female , Guatemala/ethnology , Humans , Los Angeles , Ovum
SELECTION OF CITATIONS
SEARCH DETAIL
...