Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Sci Adv ; 5(6): eaar6228, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31187054

ABSTRACT

We introduce the use of an In-Air Plasma-Induced Luminescence (In-Air-PIL) spectroscopy as an alternative to classical chemical and crystallographic methods used in materials science. The In-Air-PIL is evaluated on a case study investigating the effect of light aging on the darkening of five pristine yellow pigments commonly used in artworks. We show that the darkening is not associated to changes in the chemical composition, but to a loss in crystallinity, indicating an amorphization process of the pigments induced and catalyzed by the light irradiation. This favors the interaction of the pigment molecules with oxygen and carbon adsorbed from the environment or solved in the binding agent, subsequently leading to the formation of oxalates and carbonates as observed in other works. We demonstrate that the In-Air-PIL results are in perfect agreement with more complex classical materials science analysis methods, making our plasma-driven method a potentially easier and faster technique.

2.
Astrobiology ; 18(3): 259-293, 2018 03.
Article in English | MEDLINE | ID: mdl-29489386

ABSTRACT

Critical to the origin of life are the ingredients of life, of course, but also the physical and chemical conditions in which prebiotic chemical reactions can take place. These factors place constraints on the types of Hadean environment in which life could have emerged. Many locations, ranging from hydrothermal vents and pumice rafts, through volcanic-hosted splash pools to continental springs and rivers, have been proposed for the emergence of life on Earth, each with respective advantages and certain disadvantages. However, there is another, hitherto unrecognized environment that, on the Hadean Earth (4.5-4.0 Ga), would have been more important than any other in terms of spatial and temporal scale: the sedimentary layer between oceanic crust and seawater. Using as an example sediments from the 3.5-3.33 Ga Barberton Greenstone Belt, South Africa, analogous at least on a local scale to those of the Hadean eon, we document constant permeation of the porous, carbonaceous, and reactive sedimentary layer by hydrothermal fluids emanating from the crust. This partially UV-protected, subaqueous sedimentary environment, characterized by physical and chemical gradients, represented a widespread system of miniature chemical reactors in which the production and complexification of prebiotic molecules could have led to the origin of life. Key Words: Origin of life-Hadean environment-Mineral surface reactions-Hydrothermal fluids-Archean volcanic sediments. Astrobiology 18, 259-293.


Subject(s)
Geologic Sediments/chemistry , Origin of Life , Temperature , Water , Earth, Planet , Silicates , Volcanic Eruptions
3.
J Phys Condens Matter ; 24(12): 125801, 2012 Mar 28.
Article in English | MEDLINE | ID: mdl-22369869

ABSTRACT

Single crystals of 4H-SiC were irradiated with swift heavy ions (332 MeV Ti, 106 MeV Pb and 2.7 GeV U) in the electronic energy loss regime. The resulting damage was investigated with UV-visible optical absorption spectroscopy and micro-Raman spectroscopy. The evolution of the Raman data with fluence shows an accumulation of isolated point defects without amorphization of the material and a partial recrystallization of the structure, but only at the lowest fluence. Furthermore, the longitudinal optical phonon-plasmon coupling mode disappears upon irradiation, suggesting a strong perturbation of the electronic structure. This evolution is consistent with the optical bandgap decrease and the Urbach edge broadening that was also previously observed for the irradiation with 4 MeV Au ions.

4.
J Phys Condens Matter ; 18(37): 8493-502, 2006 Sep 20.
Article in English | MEDLINE | ID: mdl-21690903

ABSTRACT

UV-visible absorption and Raman scattering spectroscopy were used to investigate the effects of 4 MeV Xe-ion and 4 MeV Au-ion irradiations on α-SiC single crystals. The evolution of transmission spectra upon irradiation evidences an increase of the optical absorption. The optical band-gap energy decreases versus fluence, which is linked to band-gap closure attributed to the creation of localized states into the forbidden energy band. A strong effect of the irradiation temperature is observed as a result of dynamic annealing enhanced by the temperature increase. The Urbach energy increases versus fluence due to disorder accumulation in the damaged layer. Comparison of Urbach energy and disorder parameters extracted from Raman spectra shows that the Urbach energy is sensitive to the disorder induced by the accumulation of point defects.

SELECTION OF CITATIONS
SEARCH DETAIL
...