Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 110(12): 127404, 2013 Mar 22.
Article in English | MEDLINE | ID: mdl-25166848

ABSTRACT

We investigate the order parameter dynamics of the stripe-ordered nickelate, La(1.75)Sr(0.25)NiO(4), using time-resolved resonant x-ray diffraction. In spite of distinct spin and charge energy scales, the two order parameters' amplitude dynamics are found to be linked together due to strong coupling. Additionally, the vector nature of the spin sector introduces a longer reorientation time scale which is absent in the charge sector. These findings demonstrate that the correlation linking the symmetry-broken states does not unbind during the nonequilibrium process, and the time scales are not necessarily associated with the characteristic energy scales of individual degrees of freedom.

2.
Phys Rev Lett ; 109(19): 195705, 2012 Nov 09.
Article in English | MEDLINE | ID: mdl-23215404

ABSTRACT

High-pressure x-ray emission measurements are used to provide crucial evidence in the longstanding debate over the nature of the isostructural (α, γ) volume collapse in elemental cerium. Extended local atomic model calculations show that the satellite of the Lγ emission line offers direct access to the total angular momentum observable (J(2)). This satellite experiences a 30% steplike decrease across the volume collapse, validating the Kondo model in conjunction with previous measurements. Direct comparisons are made with previous predictions by dynamical mean field theory. A general experimental methodology is demonstrated for analogous work on a wide range of strongly correlated f-electron systems.


Subject(s)
Cerium/chemistry , Models, Chemical , Phase Transition , Quantum Theory , Spectrometry, X-Ray Emission/methods
3.
Nat Commun ; 3: 838, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22588300

ABSTRACT

The dynamics of an order parameter's amplitude and phase determines the collective behaviour of novel states emerging in complex materials. Time- and momentum-resolved pump-probe spectroscopy, by virtue of measuring material properties at atomic and electronic time scales out of equilibrium, can decouple entangled degrees of freedom by visualizing their corresponding dynamics in the time domain. Here we combine time-resolved femotosecond optical and resonant X-ray diffraction measurements on charge ordered La(1.75)Sr(0.25)NiO(4) to reveal unforeseen photoinduced phase fluctuations of the charge order parameter. Such fluctuations preserve long-range order without creating topological defects, distinct from thermal phase fluctuations near the critical temperature in equilibrium. Importantly, relaxation of the phase fluctuations is found to be an order of magnitude slower than that of the order parameter's amplitude fluctuations, and thus limits charge order recovery. This new aspect of phase fluctuations provides a more holistic view of the phase's importance in ordering phenomena of quantum matter.

4.
Phys Rev Lett ; 105(5): 053202, 2010 Jul 30.
Article in English | MEDLINE | ID: mdl-20867914

ABSTRACT

Bound-state, valence electronic excitation spectra of N2 are probed by nonresonant inelastic x-ray and electron scattering. Within usual theoretical treatments, dynamical structure factors derived from the two probes should be identical. However, we find strong disagreements outside the dipole scattering limit, even at high probe energies. This suggests an unexpectedly important contribution from intramolecular multiple scattering of the probe electron from core electrons or the nucleus. These effects should grow progressively stronger as the atomic number of the target species increases.

SELECTION OF CITATIONS
SEARCH DETAIL
...