Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 108(5-1): 054125, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38115401

ABSTRACT

We study the effect of spatially varying potential and diffusivity on the dispersion of a tracer particle in single-file diffusion. Noninteracting particles in such a system exhibit normal diffusion at late times, which is characterized by an effective diffusion constant D_{eff}. Here we demonstrate the physically appealing result that the dispersion of single-file tracers in this system has the same long-time behavior as that for Brownian particles in a spatially homogeneous system with constant diffusivity D_{eff}. Our results are based on a late-time analysis of the Fokker-Planck equation, motivated by the mathematical theory of homogenization. The findings are confirmed by numerical simulations for both annealed and quenched initial conditions.

2.
Phys Rev Lett ; 131(14): 147101, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37862659

ABSTRACT

Relating thermodynamic and kinetic properties is a conceptual challenge with many practical benefits. Here, based on first principles, we derive a rigorous inequality relating the entropy and the dynamic propagator of particle configurations. It is universal and applicable to steady states arbitrarily far from thermodynamic equilibrium. Applying the general relation to diffusive dynamics yields a relation between the entropy and the (normal or anomalous) diffusion coefficient. The relation can be used to obtain useful bounds for the late-time diffusion coefficient from the calculated steady-state entropy or, conversely, to estimate the entropy based on measured diffusion coefficients. We demonstrate the validity and usefulness of the relation through several examples and discuss its broad range of applications, in particular, for systems far from equilibrium.

3.
Soft Matter ; 19(27): 5118-5126, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37382372

ABSTRACT

A major challenge in the study of active matter lies in quantitative characterization of phases and transitions between them. We show how the entropy of a collection of active objects can be used to classify regimes and spatial patterns in their collective behavior. Specifically, we estimate the contributions to the total entropy from correlations between the degrees of freedom of position and orientation. This analysis pin-points the flocking transition in the Vicsek model while clarifying the physical mechanism behind the transition. When applied to experiments on swarming Bacillus subtilis with different cell aspect ratios and overall bacterial area fractions, the entropy analysis reveals a rich phase diagram with transitions between qualitatively different swarm statistics. We discuss physical and biological implications of these findings.

4.
Phys Rev E ; 107(1-1): 014138, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36797967

ABSTRACT

We derive a functional for the entropy contributed by any microscopic degrees of freedom as arising from their measurable pair correlations. Applicable both in and out of equilibrium, this functional yields the maximum entropy which a system can have given a certain correlation function. When applied to different correlations, the method allows us to identify the degrees of freedom governing a certain physical regime, thus capturing and characterizing dynamic transitions. The formalism applies also to systems whose translational invariance is broken by external forces and whose number of particles may vary. We apply it to experimental results for jammed bidisperse emulsions, capturing the crossover of this nonequilibrium system from crystalline to disordered hyperuniform structures as a function of mixture composition. We discover that the cross-correlations between the positions and sizes of droplets in the emulsion play the central role in the formation of the disordered hyperuniform states. We discuss implications of the approach for entropy estimation out of equilibrium and for characterizing transitions in disordered systems.

5.
Biophys J ; 120(10): 2030-2039, 2021 05 18.
Article in English | MEDLINE | ID: mdl-33744264

ABSTRACT

We study the Brownian motion of an assembly of mobile inclusions embedded in a fluid membrane. The motion includes the dispersal of the assembly, accompanied by the diffusion of its center of mass. Usually, the former process is much faster than the latter because the diffusion coefficient of the center of mass is inversely proportional to the number of particles. However, in the case of membrane inclusions, we find that the two processes occur on the same timescale, thus significantly prolonging the lifetime of the assembly as a collectively moving object. This effect is caused by the quasi-two-dimensional membrane flows, which couple the motions of even the most remote inclusions in the assembly. The same correlations also cause the diffusion coefficient of the center of mass to decay slowly with time, resulting in weak subdiffusion. We confirm our analytical results by Brownian dynamics simulations with flow-mediated correlations. The effect reported here should have implications for the stability of nanoscale membrane heterogeneities.


Subject(s)
Molecular Dynamics Simulation , Diffusion , Motion
SELECTION OF CITATIONS
SEARCH DETAIL
...