Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Clin Microbiol Antimicrob ; 23(1): 54, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886694

ABSTRACT

BACKGROUND: Achromobacter spp. are opportunistic pathogens, mostly infecting immunocompromised patients and patients with cystic fibrosis (CF) and considered as difficult-to-treat pathogens due to both intrinsic resistance and the possibility of acquired antimicrobial resistance. Species identification remains challenging leading to imprecise descriptions of resistance in each taxon. Cefiderocol is a broad-spectrum siderophore cephalosporin increasingly used in the management of Achromobacter infections for which susceptibility data remain scarce. We aimed to describe the susceptibility to cefiderocol of a collection of Achromobacter strains encompassing different species and isolation sources from CF or non-CF (NCF) patients. METHODS: We studied 230 Achromobacter strains (67 from CF, 163 from NCF patients) identified by nrdA gene-based analysis, with available susceptibility data for piperacillin-tazobactam, meropenem and trimethoprim-sulfamethoxazole. Minimal inhibitory concentrations (MICs) of cefiderocol were determined using the broth microdilution reference method according to EUCAST guidelines. RESULTS: Strains belonged to 15 species. A. xylosoxidans represented the main species (71.3%). MICs ranged from ≤ 0.015 to 16 mg/L with MIC50/90 of ≤ 0.015/0.5 mg/L overall and 0.125/2 mg/L against 27 (11.7%) meropenem-non-susceptible strains. Cefiderocol MICs were not related to CF/NCF origin or species although A. xylosoxidans MICs were statistically lower than those of other species considered as a whole. Considering the EUCAST non-species related breakpoint (2 mg/L), 228 strains (99.1%) were susceptible to cefiderocol. The two cefiderocol-resistant strains (A. xylosoxidans from CF patients) represented 3.7% of meropenem-non-susceptible strains and 12.5% of MDR strains. CONCLUSIONS: Cefiderocol exhibited excellent in vitro activity against a large collection of accurately identified Achromobacter strains, irrespective of species and origin.


Subject(s)
Achromobacter , Anti-Bacterial Agents , Cefiderocol , Cephalosporins , Cystic Fibrosis , Gram-Negative Bacterial Infections , Microbial Sensitivity Tests , Humans , Achromobacter/drug effects , Achromobacter/genetics , Achromobacter/isolation & purification , Achromobacter/classification , Anti-Bacterial Agents/pharmacology , Cephalosporins/pharmacology , Cystic Fibrosis/microbiology , Gram-Negative Bacterial Infections/microbiology
2.
Int J Mol Sci ; 24(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36614040

ABSTRACT

Staphylococcus aureus is a major human pathogen whose characteristics support its success in various clinical settings including Cystic Fibrosis (CF). In CF, S. aureus is indeed the most commonly identified opportunistic pathogen in children and the overall population. S. aureus colonization/infection, either by methicillin-susceptible or methicillin-resistant strains, will become chronic in about one third of CF patients. The persistence of S. aureus in CF patients' lungs, despite various eradication strategies, is favored by several traits in both host and pathogen. Among the latter, living in biofilm is a highly protective way to survive despite deleterious environmental conditions, and is a common characteristic shared by the main pathogens identified in CF. This is why CF has earned the status of a biofilm-associated disease for several years now. Biofilm formation by S. aureus, and the molecular mechanisms governing and regulating it, have been extensively studied but have received less attention in the specific context of CF lungs. Here, we review the current knowledge on S. aureus biofilm in this very context, i.e., the importance, study methods, molecular data published on mono- and multi-species biofilm and anti-biofilm strategies. This focus on studies including clinical isolates from CF patients shows that they are still under-represented in the literature compared with studies based on reference strains, and underlines the need for such studies. Indeed, CF clinical strains display specific characteristics that may not be extrapolated from results obtained on laboratory strains.


Subject(s)
Cystic Fibrosis , Staphylococcal Infections , Child , Humans , Cystic Fibrosis/complications , Staphylococcus aureus/physiology , Biofilms , Phenotype , Anti-Bacterial Agents
3.
Front Microbiol ; 12: 750489, 2021.
Article in English | MEDLINE | ID: mdl-34721354

ABSTRACT

Cystic fibrosis (CF) is a genetic disease with lung abnormalities making patients particularly predisposed to pulmonary infections. Staphylococcus aureus is the most frequently identified pathogen, and multidrug-resistant strains (MRSA, methicillin-resistant S. aureus) have been associated with more severe lung dysfunction leading to eradication recommendations. Diverse bacterial traits and adaptive skills, including biofilm formation, may, however, make antimicrobial therapy challenging. In this context, we compared the ability of a collection of genotyped MRSA isolates from CF patients to form biofilm with and without antibiotics (ceftaroline, ceftobiprole, linezolid, trimethoprim, and rifampicin). Our study used standardized approaches not previously applied to CF MRSA, the BioFilm Ring test® (BRT®), the Antibiofilmogram®, and the BioFlux™ 200 system which were adapted for use with the artificial sputum medium (ASM) mimicking conditions more relevant to the CF lung. We included 63 strains of 10 multilocus sequence types (STs) isolated from 35 CF patients, 16 of whom had chronic colonization. The BRT® showed that 27% of the strains isolated in 37% of the patients were strong biofilm producers. The Antibiofilmogram® performed on these strains showed that broad-spectrum cephalosporins had the lowest minimum biofilm inhibitory concentrations (bMIC) on a majority of strains. A focus on four chronically colonized patients with inclusion of successively isolated strains showed that ceftaroline, ceftobiprole, and/or linezolid bMICs may remain below the resistance thresholds over time. Studying the dynamics of biofilm formation by strains isolated 3years apart in one of these patients using BioFlux™ 200 showed that inhibition of biofilm formation was observed for up to 36h of exposure to bMIC and ceftaroline and ceftobiprole had a significantly greater effect than linezolid. This study has brought new insights into the behavior of CF MRSA which has been little studied for its ability to form biofilm. Biofilm formation is a common characteristic of prevalent MRSA clones in CF. Early biofilm formation was strain-dependent, even within a sample, and not only observed during chronic colonization. Ceftaroline and ceftobiprole showed a remarkable activity with a long-lasting inhibitory effect on biofilm formation and a conserved activity on certain strains adapted to the CF lung environment after years of colonization.

4.
Genes (Basel) ; 12(5)2021 04 21.
Article in English | MEDLINE | ID: mdl-33919046

ABSTRACT

In patients with cystic fibrosis (CF), the lung is a remarkable ecological niche in which the microbiome is subjected to important selective pressures. An inexorable colonization by bacteria of both endogenous and environmental origin is observed in most patients, leading to a vicious cycle of infection-inflammation. In this context, long-term colonization together with competitive interactions among bacteria can lead to over-inflammation. While Pseudomonas aeruginosa and Staphylococcus aureus, the two pathogens most frequently identified in CF, have been largely studied for adaptation to the CF lung, in the last few years, there has been a growing interest in emerging pathogens of environmental origin, namely Achromobacter xylosoxidans and Stenotrophomonas maltophilia. The aim of this review is to gather all the current knowledge on the major pathophysiological traits, their supporting mechanisms, regulation and evolutionary modifications involved in colonization, virulence, and competitive interactions with other members of the lung microbiota for these emerging pathogens, with all these mechanisms being major drivers of persistence in the CF lung. Currently available research on A. xylosoxidans complex and S. maltophilia shows that these emerging pathogens share important pathophysiological features with well-known CF pathogens, making them important members of the complex bacterial community living in the CF lung.


Subject(s)
Achromobacter denitrificans/genetics , Cystic Fibrosis/microbiology , Gram-Negative Bacterial Infections/microbiology , Mutation Rate , Stenotrophomonas maltophilia/genetics , Achromobacter denitrificans/pathogenicity , Adaptation, Physiological , Cystic Fibrosis/complications , Gram-Negative Bacterial Infections/complications , Humans , Lung/microbiology , Stenotrophomonas maltophilia/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...