Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Sci Rep ; 12(1): 18895, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36344614

ABSTRACT

The arguably most important paradox of financial economics-the excess volatility puzzle-first identified by Robert Shiller in 1981 states that asset prices fluctuate much more than information about their fundamental value. We show that this phenomenon is associated with an intrinsic propensity for financial markets to evolve towards instabilities. These properties, exemplified for two major financial markets, the foreign exchange and equity futures markets, can be expected to be generic in other complex systems where excess fluctuations result from the interplay between exogenous driving and endogenous feedback. Using an exact mapping of the key property (volatility/variance) of the price diffusion process onto that of a point process (arrival intensity of price changes), together with a self-excited epidemic model, we introduce a novel decomposition of the volatility of price fluctuations into an exogenous (i.e. efficient) component and an endogenous (i.e. inefficient) excess component. The endogenous excess volatility is found to be substantial, largely stable at longer time scales and thus provides a plausible explanation for the excess volatility puzzle. Our theory rationalises the remarkable fact that small stochastic exogenous fluctuations at the micro-scale of milliseconds to seconds are renormalised into long-term excess volatility with an amplification factor of around 5 for equity futures and 2 for exchange rates, in line with models including economic fundamentals explicitly.


Subject(s)
Internationality , Feedback , Forecasting
2.
PLoS One ; 17(8): e0273551, 2022.
Article in English | MEDLINE | ID: mdl-36040872

ABSTRACT

We present a short review of discrete-time quantum walks (DTQW) as a potentially useful and rich formalism to model human decision-making. We present a pedagogical introduction of the underlying formalism and main structural properties. We suggest that DTQW are particularly suitable for combining the two strands of literature on evidence accumulator models and on the quantum formalism of cognition. Due to the additional spin degree of freedom, models based on DTQW allow for a natural modeling of model choice and confidence rating in separate bases. Levels of introspection and self-assessment during choice deliberations can be modeled by the introduction of a probability for measurement of either position and/or spin of the DTQW, where each measurement act leads to a partial decoherence (corresponding to a step towards rationalization) of the deliberation process. We show how quantum walks predict observed probabilistic misperception like S-shaped subjective probability and conjunction fallacy. Our framework emphasizes the close relationship between response times and type of preferences and of responses. In particular, decision theories based on DTQW do not need to invoke two systems ("fast" and "slow") as in dual process theories. Within our DTQW framework, the two fast and slow systems are replaced by a single system, but with two types of self-assessment or introspection. The "thinking fast" regime is obtained with no or little self-assessment, while the "thinking slow" regime corresponds to a strong rate of self-assessment. We predict a trade-off between speed and accuracy, as empirically reported.


Subject(s)
Decision Making , Quantum Theory , Cognition/physiology , Decision Making/physiology , Decision Theory , Humans , Reaction Time
3.
Sci Rep ; 12(1): 11663, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35803977

ABSTRACT

We investigate the predictability and persistence of individual and team performance (hot-hand effect) by analyzing the complete recorded history of international cricket. We introduce an original temporal representation of performance streaks, which is suitable to be modelled as a self-exciting point process. We confirm the presence of predictability and hot-hands across the individual performance and the absence of the same in team performance and game outcome. Thus, Cricket is a game of skill for individuals and a game of chance for the teams. Our study contributes to recent historiographical debates concerning the presence of persistence in individual and collective productivity and success. The introduction of several metrics and methods can be useful to test and exploit clustering of performance in the study of human behavior and design of algorithms for predicting success.


Subject(s)
Efficiency , Humans , Probability
4.
Sci Rep ; 12(1): 7637, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35538100

ABSTRACT

Notwithstanding a significant understanding of epidemic processes in biological, social, financial, and geophysical systems, little is known about contagion behavior in individual productivity and success. We introduce an epidemic model to study the contagion of scholarly productivity and YouTube success. Our analysis reveals the existence of synchronized bursts in individual productivity and success, which are likely mediated by sustained flows of information within the networks.


Subject(s)
Efficiency , Epidemics
5.
PLoS One ; 17(2): e0263962, 2022.
Article in English | MEDLINE | ID: mdl-35176103

ABSTRACT

Organized into a global network of critical infrastructures, the oil & gas industry remains to this day the main energy contributor to the world's economy. Severe accidents occasionally occur resulting in fatalities and disruption. We build an oil & gas accident graph based on more than a thousand severe accidents for the period 1970-2016 recorded for refineries, tankers, and gas networks in the authoritative ENergy-related Severe Accident Database (ENSAD). We explore the distribution of potential chains-of-events leading to severe accidents by combining graph theory, Markov analysis and catastrophe dynamics. Using centrality measures, we first verify that human error is consistently the main source of accidents and that explosion, fire, toxic release, and element rupture are the principal sinks, but also the main catalysts for accident amplification. Second, we quantify the space of possible chains-of-events using the concept of fundamental matrix and rank them by defining a likelihood-based importance measure γ. We find that chains of up to five events can play a significant role in severe accidents, consisting of feedback loops of the aforementioned events but also of secondary events not directly identifiable from graph topology and yet participating in the most likely chains-of-events.


Subject(s)
Accidents, Occupational/statistics & numerical data , Accidents/statistics & numerical data , Databases, Factual , Extraction and Processing Industry/statistics & numerical data , Oil and Gas Fields/chemistry , Humans , Risk Factors
6.
Sci Rep ; 11(1): 21939, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34753988

ABSTRACT

In the first quarter of 2020, the COVID-19 pandemic brought the world to a state of paralysis. During this period, humanity saw by far the largest organized travel restrictions and unprecedented efforts and global coordination to contain the spread of the SARS-CoV-2 virus. Using large scale human mobility and fine grained epidemic incidence data, we develop a framework to understand and quantify the effectiveness of the interventions implemented by various countries to control epidemic growth. Our analysis reveals the importance of timing and implementation of strategic policy in controlling the epidemic. We also unearth significant spatial diffusion of the epidemic before and during the lockdown measures in several countries, casting doubt on the effectiveness or on the implementation quality of the proposed Governmental policies.


Subject(s)
COVID-19 , Pandemics , Humans , SARS-CoV-2 , Workplace
7.
Phys Rev Lett ; 127(18): 188301, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34767401

ABSTRACT

The origin(s) of the ubiquity of probability distribution functions with power law tails is still a matter of fascination and investigation in many scientific fields from linguistic, social, economic, computer sciences to essentially all natural sciences. In parallel, self-excited dynamics is a prevalent characteristic of many systems, from the physics of shot noise and intermittent processes, to seismicity, financial and social systems. Motivated by activation processes of the Arrhenius form, we bring the two threads together by introducing a general class of nonlinear self-excited point processes with fast-accelerating intensities as a function of "tension." Solving the corresponding master equations, we find that a wide class of such nonlinear Hawkes processes have the probability distribution functions of their intensities described by a power law on the condition that (i) the intensity is a fast-accelerating function of tension, (ii) the distribution of marks is two sided with nonpositive mean, and (iii) it has fast-decaying tails. In particular, Zipf's scaling is obtained in the limit where the average mark is vanishing. This unearths a novel mechanism for power laws including Zipf's law, providing a new understanding of their ubiquity.

8.
Entropy (Basel) ; 23(10)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34682003

ABSTRACT

We present an analysis of a large emerging scientific project in the light provided by the social bubbles hypothesis (SBH) that we have introduced in earlier papers. The SBH claims that, during an innovation boom or technological revolution, strong social interactions between enthusiastic supporters weave a network of reinforcing feedbacks that leads to widespread endorsement and extraordinary commitment, beyond what would be rationalized by a standard cost-benefit analysis. By probing the (Future and Emerging Technologies) FET Flagship candidate FuturICT project, as it developed in 2010-2013, we aimed at better understanding how a favorable climate was engineered, allowing the dynamics and risk-taking behaviors to evolve. We document that significant risk-taking was indeed clearly found-especially during workshops and meetings, for instance, in the form of the time allocation of participants, who seemed not to mind their precious time being given to the project and who exhibited many signs of enthusiasm. In this sense, the FuturICT project qualifies as a social bubble in the making when considered at the group level. In contrast, risk-perception at the individual level remained high and not everyone involved shared the exuberance cultivated by the promoters of FuturICT. As a consequence, those not unified under the umbrella of the core vision built niches for themselves that were stimulating enough to stay with the project, but not on a basis of blind over-optimism. Our detailed field study shows that, when considering individuals in isolation, the characteristics associated with a social bubble can vary significantly in the presence of other factors besides exaggerated risk-taking.

9.
Article in English | MEDLINE | ID: mdl-33946425

ABSTRACT

The 2019 Global Assessment Report (GAR2019) on Disaster Risk Reduction [...].


Subject(s)
Disaster Planning , Disasters , Risk Reduction Behavior
10.
Phys Rev Lett ; 126(12): 128501, 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33834802

ABSTRACT

Seismicity and faulting within the Earth's crust are characterized by many scaling laws that are usually interpreted as qualifying the existence of underlying physical mechanisms associated with some kind of criticality in the sense of phase transitions. Using an augmented epidemic-type aftershock sequence (ETAS) model that accounts for the spatial variability of the background rates µ(x,y), we present a direct quantitative test of criticality. We calibrate the model to the ANSS catalog of the entire globe, the region around California, and the Geonet catalog for the region around New Zealand using an extended expectation-maximization (EM) algorithm including the determination of µ(x,y). We demonstrate that the criticality reported in previous studies is spurious and can be attributed to a systematic upward bias in the calibration of the branching ratio of the ETAS model, when not accounting correctly for spatial variability. We validate the version of the ETAS model that possesses a space varying background rate µ(x,y) by performing pseudoprospective forecasting tests. The noncriticality of seismicity has major implications for the prediction of large events.

11.
Entropy (Basel) ; 23(2)2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33669835

ABSTRACT

The Sigma-Pi structure investigated in this work consists of the sum of products of an increasing number of identically distributed random variables. It appears in stochastic processes with random coefficients and also in models of growth of entities such as business firms and cities. We study the Sigma-Pi structure with Bernoulli random variables and find that its probability distribution is always bounded from below by a power-law function regardless of whether the random variables are mutually independent or duplicated. In particular, we investigate the case in which the asymptotic probability distribution has always upper and lower power-law bounds with the same tail-index, which depends on the parameters of the distribution of the random variables. We illustrate the Sigma-Pi structure in the context of a simple growth model with successively born entities growing according to a stochastic proportional growth law, taking both Bernoulli, confirming the theoretical results, and half-normal random variables, for which the numerical results can be rationalized using insights from the Bernoulli case. We analyze the interdependence among entities represented by the product terms within the Sigma-Pi structure, the possible presence of memory in growth factors, and the contribution of each product term to the whole Sigma-Pi structure. We highlight the influence of the degree of interdependence among entities in the number of terms that effectively contribute to the total sum of sizes, reaching the limiting case of a single term dominating extreme values of the Sigma-Pi structure when all entities grow independently.

12.
PLoS One ; 15(12): e0243661, 2020.
Article in English | MEDLINE | ID: mdl-33315897

ABSTRACT

Humans are notoriously bad at understanding probabilities, exhibiting a host of biases and distortions that are context dependent. This has serious consequences on how we assess risks and make decisions. Several theories have been developed to replace the normative rational expectation theory at the foundation of economics. These approaches essentially assume that (subjective) probabilities weight multiplicatively the utilities of the alternatives offered to the decision maker, although evidence suggest that probability weights and utilities are often not separable in the mind of the decision maker. In this context, we introduce a simple and efficient framework on how to describe the inherently probabilistic human decision-making process, based on a representation of the deliberation activity leading to a choice through stochastic processes, the simplest of which is a random walk. Our model leads naturally to the hypothesis that probabilities and utilities are entangled dual characteristics of the real human decision making process. It predicts the famous fourfold pattern of risk preferences. Through the analysis of choice probabilities, it is possible to identify two previously postulated features of prospect theory: the inverse S-shaped subjective probability as a function of the objective probability and risk-seeking behavior in the loss domain. It also predicts observed violations of stochastic dominance, while it does not when the dominance is "evident". Extending the model to account for human finite deliberation time and the effect of time pressure on choice, it provides other sound predictions: inverse relation between choice probability and response time, preference reversal with time pressure, and an inverse double-S-shaped probability weighting function. Our theory, which offers many more predictions for future tests, has strong implications for psychology, economics and artificial intelligence.


Subject(s)
Decision Support Techniques , Stochastic Processes , Choice Behavior , Cognition , Decision Making , Humans , Probability , Risk-Taking
13.
Entropy (Basel) ; 22(10)2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33286951

ABSTRACT

A vast literature investigating behavioural underpinnings of financial bubbles and crashes relies on laboratory experiments. However, it is not yet clear how findings generated in a highly artificial environment relate to the human behaviour in the wild. It is of concern that the laboratory setting may create a confound variable that impacts the experimental results. To explore the similarities and differences between human behaviour in the laboratory environment and in a realistic natural setting, with the same type of participants, we translate a field study conducted by reference (Sornette, D.; et al. Econ. E-J.2020, 14, 1-53) with trading rounds each lasting six full days to a laboratory experiment lasting two hours. The laboratory experiment replicates the key findings from the field study but we observe substantial differences in the market dynamics between the two settings. The replication of the results in the two distinct settings indicates that relaxing some of the laboratory control does not corrupt the main findings, while at the same time it offers several advantages such as the possibility to increase the number of participants interacting with each other at the same time and the number of traded securities. These findings pose important insights for future experiments investigating human behaviour in complex systems.

14.
Nonlinear Dyn ; 101(3): 1751-1776, 2020.
Article in English | MEDLINE | ID: mdl-33020681

ABSTRACT

We present results on the mortality statistics of the COVID-19 epidemic in a number of countries. Our data analysis suggests classifying countries in five groups, (1) Western countries, (2) East Block, (3) developed Southeast Asian countries, (4) Northern Hemisphere developing countries and (5) Southern Hemisphere countries. Comparing the number of deaths per million inhabitants, a pattern emerges in which the Western countries exhibit the largest mortality rate. Furthermore, comparing the running cumulative death tolls as the same level of outbreak progress in different countries reveals several subgroups within the Western countries and further emphasises the difference between the five groups. Analysing the relationship between deaths per million and life expectancy in different countries, taken as a proxy of the preponderance of elderly people in the population, a main reason behind the relatively more severe COVID-19 epidemic in the Western countries is found to be their larger population of elderly people, with exceptions such as Norway and Japan, for which other factors seem to dominate. Our comparison between countries at the same level of outbreak progress allows us to identify and quantify a measure of efficiency of the level of stringency of confinement measures. We find that increasing the stringency from 20 to 60 decreases the death count by about 50 lives per million in a time window of 20  days. Finally, we perform logistic equation analyses of deaths as a means of tracking the dynamics of outbreaks in the "first wave" and estimating the associated ultimate mortality, using four different models to identify model error and robustness of results. This quantitative analysis allows us to assess the outbreak progress in different countries, differentiating between those that are at a quite advanced stage and close to the end of the epidemic from those that are still in the middle of it. This raises many questions in terms of organisation, preparedness, governance structure and so on.

15.
Phys Rev Lett ; 125(13): 138301, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-33034505

ABSTRACT

The Hawkes self-excited point process provides an efficient representation of the bursty intermittent dynamics of many physical, biological, geological, and economic systems. By expressing the probability for the next event per unit time (called "intensity"), say of an earthquake, as a sum over all past events of (possibly) long-memory kernels, the Hawkes model is non-Markovian. By mapping the Hawkes model onto stochastic partial differential equations that are Markovian, we develop a field theoretical approach in terms of probability density functionals. Solving the steady-state equations, we predict a power law scaling of the probability density function of the intensities close to the critical point n=1 of the Hawkes process, with a nonuniversal exponent, function of the background intensity ν_{0} of the Hawkes intensity, the average timescale of the memory kernel and the branching ratio n. Our theoretical predictions are confirmed by numerical simulations.

16.
Proc Natl Acad Sci U S A ; 117(44): 27090-27095, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33067387

ABSTRACT

We develop an early warning system and subsequent optimal intervention policy to avoid the formation of disproportional dominance ("winner takes all," WTA) in growing complex networks. This is modeled as a system of interacting agents, whereby the rate at which an agent establishes connections to others is proportional to its already existing number of connections and its intrinsic fitness. We derive an exact four-dimensional phase diagram that separates the growing system into two regimes: one where the "fit get richer" and one where, eventually, the WTA. By calibrating the system's parameters with maximum likelihood, its distance from the unfavorable WTA regime can be monitored in real time. This is demonstrated by applying the theory to the eToro social trading platform where users mimic each other's trades. If the system state is within or close to the WTA regime, we show how to efficiently control the system back into a more stable state along a geodesic path in the space of fitness distributions. It turns out that the common measure of penalizing the most dominant agents does not solve sustainably the problem of drastic inequity. Instead, interventions that first create a critical mass of high-fitness individuals followed by pushing the relatively low-fitness individuals upward is the best way to avoid swelling inequity and escalating fragility.

17.
Nonlinear Dyn ; 101(3): 1847-1869, 2020.
Article in English | MEDLINE | ID: mdl-32929304

ABSTRACT

With the unfolding of the COVID-19 pandemic, mathematical modelling of epidemics has been perceived and used as a central element in understanding, predicting, and governing the pandemic event. However, soon it became clear that long-term predictions were extremely challenging to address. In addition, it is still unclear which metric shall be used for a global description of the evolution of the outbreaks. Yet a robust modelling of pandemic dynamics and a consistent choice of the transmission metric is crucial for an in-depth understanding of the macroscopic phenomenology and better-informed mitigation strategies. In this study, we propose a Markovian stochastic framework designed for describing the evolution of entropy during the COVID-19 pandemic together with the instantaneous reproductive ratio. Then, we introduce and use entropy-based metrics of global transmission to measure the impact and the temporal evolution of a pandemic event. In the formulation of the model, the temporal evolution of the outbreak is modelled by an equation governing the probability distribution that describes a nonlinear Markov process of a statistically averaged individual, leading to a clear physical interpretation. The time-dependent parameters are formulated by adaptive basis functions, leading to a parsimonious representation. In addition, we provide a full Bayesian inversion scheme for calibration together with a coherent strategy to address data unreliability. The time evolution of the entropy rate, the absolute change in the system entropy, and the instantaneous reproductive ratio are natural and transparent outputs of this framework. The framework has the appealing property of being applicable to any compartmental epidemic model. As an illustration, we apply the proposed approach to a simple modification of the susceptible-exposed-infected-removed model. Applying the model to the Hubei region, South Korean, Italian, Spanish, German, and French COVID-19 datasets, we discover significant difference in the absolute change of entropy but highly regular trends for both the entropy evolution and the instantaneous reproductive ratio.

18.
Nonlinear Dyn ; 101(3): 1561-1581, 2020.
Article in English | MEDLINE | ID: mdl-32836822

ABSTRACT

Started in Wuhan, China, the COVID-19 has been spreading all over the world. We calibrate the logistic growth model, the generalized logistic growth model, the generalized Richards model and the generalized growth model to the reported number of infected cases for the whole of China, 29 provinces in China, and 33 countries and regions that have been or are undergoing major outbreaks. We dissect the development of the epidemics in China and the impact of the drastic control measures both at the aggregate level and within each province. We quantitatively document four phases of the outbreak in China with a detailed analysis on the heterogeneous situations across provinces. The extreme containment measures implemented by China were very effective with some instructive variations across provinces. Borrowing from the experience of China, we made scenario projections on the development of the outbreak in other countries. We identified that outbreaks in 14 countries (mostly in western Europe) have ended, while resurgences of cases have been identified in several among them. The modeling results clearly show longer after-peak trajectories in western countries, in contrast to most provinces in China where the after-peak trajectory is characterized by a much faster decay. We identified three groups of countries in different level of outbreak progress, and provide informative implications for the current global pandemic.

19.
Rep Prog Phys ; 82(12): 125901, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31505468

ABSTRACT

Multifractality is ubiquitously observed in complex natural and socioeconomic systems. Multifractal analysis provides powerful tools to understand the complex nonlinear nature of time series in diverse fields. Inspired by its striking analogy with hydrodynamic turbulence, from which the idea of multifractality originated, multifractal analysis of financial markets has bloomed, forming one of the main directions of econophysics. We review the multifractal analysis methods and multifractal models adopted in or invented for financial time series and their subtle properties, which are applicable to time series in other disciplines. We survey the cumulating evidence for the presence of multifractality in financial time series in different markets and at different time periods and discuss the sources of multifractality. The usefulness of multifractal analysis in quantifying market inefficiency, in supporting risk management and in developing other applications is presented. We finally discuss open problems and further directions of multifractal analysis.

20.
PLoS One ; 14(8): e0220645, 2019.
Article in English | MEDLINE | ID: mdl-31442240

ABSTRACT

Financial prices fluctuate as a results of the market impact of the flow of transactions between traders. Reciprocally, several studies of market microstructure have shown how decisions of individual traders or banks, implemented in their trading strategies, are affected by historical market information. However, little is known about the detailed processes of how such trading strategies at the micro level recursively affect future market information at the macro level. Using a special fined-grained dataset that allows us to track the complete trading behavior of specific banks in a U.S. dollar (USD) versus Japanese yen (JPY) market, we find that position management methods, defined as the number of units of USD bought or sold by banks against JPY, can be classified into two strategies: (1) banks increase their positions by trading in the same direction repeatedly, or (2) banks attempt to reduce their inventories by rapidly shifting their positions toward zero. We then demonstrate that their systematic position management strategies strongly influence future market prices, as demonstrated by our ability using this information to predict market prices about fifteen minutes in advance. Further, by detecting outlier trades, we reveal that traders seem to switch their strategies when they become aware of outlier trades. The evidence obtained here suggests that positions, which are a consequence of historical trading decisions based on the position management strategies of each bank, strongly influence future market prices, and we unravel how market prices at the macro level evolve through an interactive process involving the interaction between well-defined trading strategies at the micro level.


Subject(s)
Commerce , Investments , Models, Economic , Decision Making
SELECTION OF CITATIONS
SEARCH DETAIL
...