Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 108(1): 87, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38189954

ABSTRACT

Modern requirements for 'green label' meat products have led to the design of novel antimicrobial innovations which prioritise quality, safety and longevity. Plasma-functionalised water (PFW), ultraviolet light and natural antimicrobial compositions have been investigated and optimised for control of foodborne pathogens like Campylobacter jejuni and Salmonella enterica serovar Typhimurium. However, given the adaptive mechanisms present in bacteria under external stresses, it is imperative to understand the effect that sublethal treatment may have on the bacterial transcriptome. In this study, Salmonella Typhimurium and C. jejuni were treated with sublethal doses of ultraviolet light, a citrus juice/essential oil marinade, and 'spark' or 'glow' cold plasma generation system-produced PFW. Immediately after treatment, cells were lysed and RNA was extracted and purified. mRNA was converted to cDNA by reverse transcription-PCR and sequenced by an Illumina MiSeq® system. Sequences were filtered and analysed using the Tuxedo workflow. Sublethal treatment of Campylobacter jejuni and Salmonella Typhimurium led to increased immediate cellular and metabolic activity, as well as diversification in protein and metabolic functioning. There was further expression of pathogenesis and virulence-associated traits associated with spark PFW and marinade treatment of Salmonella Typhimurium. However, similar concerns were not raised with glow PFW or UV-treated samples. This study provides science-based evidence of the efficacy of multi-hurdle antimicrobial system using green-label marinades and PFW or UV to inactivate pathogens without upregulating virulence traits in surviving cells. This study will inform policymakers and food industry stakeholders and reinforces the need to incorporate in-line novel technologies to ensure consumer safety. KEY POINTS: • Salmonella and C. jejuni showed increased cell activity in immediate response to stress. • Virulence genes showed increased expression when treated with natural antimicrobials and sPFW. • Reduced immediate transcriptomic response to gPFW and UV treatment indicates lower risk.


Subject(s)
Anti-Infective Agents , Campylobacter jejuni , Meat , Anti-Infective Agents/pharmacology , Campylobacter jejuni/genetics , DNA, Complementary , Fruit and Vegetable Juices
2.
Food Microbiol ; 116: 104365, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37689419

ABSTRACT

This study investigated the combined effect of Ultraviolet (UV) light-emitting diode (LED) technology treatment with refrigerated storage of chicken breast meat over 7 days on Campylobacter jejuni, Salmonella enterica serovar Typhimurium, total viable counts (TVC) and total Enterobacteriaceae counts (TEC). An optimised UV-LED treatment at 280 nm for 6 min decreased inoculated S. Typhimurium and C. jejuni populations by 0.6-0.64 log CFU/g, and TVC and TEC population by 1-1.2 log CFU/g in chicken samples. During a 7-day storage at 4 °C, a 0.73 log reduction in C. jejuni was achieved compared with non-treated samples. Moreover, the UV-LED effectiveness to reduce TVC and TEC during refrigerated storage was compared with a conventional UV lamp and a similar efficiency was observed. The impact of UV-LED and UV lamp devices on the microbial community composition of chicken meat during storage was further examined using 16 S rRNA gene amplicon sequencing. Although similar bacterial reductions were observed for both technologies, the microbial communities were impacted differently. Treatment with the UV conventional lamp increased the proportion of Brochothrix spp. In meat samples, whilst Photobacterium spp. Levels were reduced.


Subject(s)
Campylobacter , Microbiota , Animals , Chickens , Ultraviolet Rays , Enterobacteriaceae , Salmonella typhimurium
3.
Mar Drugs ; 21(9)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37755091

ABSTRACT

Marine algae are sources of bioactive components with defensive properties of great value against microbial infections. This study investigated the bioactivity of extracts from brown algae Fucus vesiculosus against rotavirus, the worldwide leading cause of acute gastroenteritis in infants and young children. Moreover, one of the extracts was tested against four foodborne bacteria: Campylobacter jejuni, Escherichia coli, Salmonella Typhimurium, and Listeria monocytogenes, and the non-pathogenic: E. coli K12. In vitro tests using MA104 cells revealed that both whole algae extracts and crude fucoidan precipitates neutralized rotavirus in a dose-responsive manner. The maximum neutralization activity was observed when the rotavirus was incubated with 100 µg mL-1 of the hydrochloric acid-obtained crude fucoidan (91.8%), although crude fucoidan extracted using citric acid also demonstrated high values (89.5%) at the same concentration. Furthermore, molecular weight fractionation of extracts decreased their antirotaviral activity and high molecular weight fractions exhibited higher activity compared to those of lower molecular weight. A seaweed extract with high antirotaviral activity was also found to inhibit the growth of C. jejuni, S. Typhimurium, and L. monocytogenes at a concentration of 0.2 mg mL-1. Overall, this study expands the current knowledge regarding the antimicrobial mechanisms of action of extracts from F. vesiculosus.


Subject(s)
Fucus , Gastroenteritis , Rotavirus , Child , Infant , Humans , Child, Preschool , Escherichia coli
4.
Heliyon ; 9(7): e17655, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37483745

ABSTRACT

Introduction: The presence of meat-borne pathogens entering the home remains a concern for consumers, despite advances made in improving antimicrobial interventions and systems within the processing line. Naturally antibacterial food ingredients including citrus juice and essential oils have been proven to inhibit the proliferation of microbial growth with varying success. Aims: This study aims to investigate the antimicrobial and sensory effects of mixtures of essential oils, fruit juices and herbs at established Minimum Inhibitory Concentrations (MICs) for their biopreservative effect on general microbiota of chicken and against chicken challenged with selected pathogenic/surrogate microorganisms. Materials and methods: Three marinade compositions were designed for use on chicken meat; lemon juice, thyme oil and black pepper (M1), lime juice, lemongrass oil and chilli paste (M2), and olive oil, oregano oil, basil oil and garlic paste (M3). These marinades were assessed for antibacterial effects against Salmonella enterica, Campylobacter jejuni and Listeria innocua on marinaded chicken drumsticks stored in aerobic conditions at 4 °C. Consumer tasting sessions were also conducted with a small focus group using selected final marinades. Results: M1 and M2 were effective at significantly reducing initial pathogen carriage from 6 Log CFU/g to 2 Log CFU/g on refrigerated chicken meat as well as increasing the shelf-life of the product during cold-storage from 2 days to 7 days. However, consumer studies indicate that the flavours these marinades impart to treated products can be strong. Conclusion: These findings indicate that these designed marinades have shown excellent potential to improve food safety as well as shelf-life for the consumer, particularly in settings where food safety is often compromised such as barbecuing or in care settings. However, further recipe optimisation is required to make these marinades acceptable to consumers.

5.
Sci Rep ; 13(1): 9459, 2023 06 10.
Article in English | MEDLINE | ID: mdl-37301882

ABSTRACT

Campylobacter jejuni remains a high priority in public health worldwide. Ultraviolet light emitting-diode technology (UV-LED) is currently being explored to reduce Campylobacter levels in foods. However, challenges such as differences in species and strain susceptibilities, effects of repeated UV-treatments on the bacterial genome and the potential to promote antimicrobial cross-protection or induce biofilm formation have arisen. We investigated the susceptibility of eight C. jejuni clinical and farm isolates to UV-LED exposure. UV light at 280 nm induced different inactivation kinetics among strains, of which three showed reductions greater than 1.62 log CFU/mL, while one strain was particularly resistant to UV light with a maximum reduction of 0.39 log CFU/mL. However, inactivation was reduced by 0.46-1.03 log CFU/mL in these three strains and increased to 1.20 log CFU/mL in the resistant isolate after two repeated-UV cycles. Genomic changes related to UV light exposure were analysed using WGS. C. jejuni strains with altered phenotypic responses following UV exposure were also found to have changes in biofilm formation and susceptibility to ethanol and surface cleaners.


Subject(s)
Campylobacter jejuni , Campylobacter , Campylobacter jejuni/genetics , Ultraviolet Rays , Campylobacter/genetics , Food Microbiology , Food
6.
Sci Rep ; 12(1): 20503, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36443412

ABSTRACT

Antimicrobial resistance is one of the main international health concerns for humans, animals, and the environment, and substantial efforts have focused on reducing its development and spread. While there is evidence for correlations between antimicrobial usage and antimicrobial resistance development, specific information on the effect of heavy metal/antimicrobial usage on bacterial conjugation is more limited. The aim of this study was to investigate the effects of zinc and antimicrobials in different concentrations on horizontal gene transfer of an ampicillin resistance gene, using a multi-drug resistant Escherichia coli donor strain and three different Salmonella enterica serovars as recipient strains. Differences in conjugation frequencies for the different Salmonella recipients were observed, independent of the presence of zinc or the antimicrobials. Selective pressure on the recipient strains, in the form of ampicillin, resulted in a decrease in conjugation frequencies, while, the presence of rifampicin resulted in increases. Zinc exposure affected conjugation frequencies of only one of the three recipient strains, thus the effect of zinc on conjugation frequencies seemed to be concentration and strain dependent. Furthermore, differences in growth rates due to plasmid carriage were observed for one of the Salmonella strains.


Subject(s)
Gammaproteobacteria , Gene Transfer, Horizontal , Animals , Humans , Zinc/pharmacology , Conjugation, Genetic , Ampicillin , Escherichia coli/genetics
7.
Ultrason Sonochem ; 80: 105819, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34768062

ABSTRACT

The yeast Saccharomyces cerevisiae is well known for its application in the food industry for the purpose of developing fermented food. The ultrasound (US) technology offer a wide range of applications for the food industry, including the enhancement of fermentation rates and inactivation of microbial cells. However, a better understanding and standardization of this technology is still required to ensure the scaling-up process. This study investigated the effect of the US technology on the growth of S. cerevisiae using frequencies of 20, 25, 45 and 130 kHz, treatment periods from 2 to 30 min. Furthermore, yeast kinetics subjected to US treatments were evaluated using modelling tools and scanning electron microscopy (SEM) analysis to explore the impact of sonication on yeast cells. Yeast growth was monitored after different US treatments plotting optical density (OD) at 660 nm for 24 h at 30 °C. Growth curves were fitted using models of modified Gompertz and Scale-Free which showed good parameters of the fit. In particular, US frequencies of 45 and 130 kHz did not have a disruptive effect in lag phase and growth rate of the yeast populations, unlike the frequency of 20 kHz. Moreover, inactivation curves of yeast cells obtained after exposure to 20 and 25 kHz also observed the best fit using the Weibull model. US frequency of 20 kHz achieved significant reductions of 1.3 log cfu/mL in yeast concentration and also induced important cell damage on the external structures of S. cerevisiae. In conclusion, the present study demonstrated the significant effect of applying different US frequencies on the yeast growth for potential application in the food industry.


Subject(s)
Saccharomyces cerevisiae , Sonication , Fermentation , Kinetics , Ultrasonics
8.
Compr Rev Food Sci Food Saf ; 19(4): 1353-1377, 2020 07.
Article in English | MEDLINE | ID: mdl-33337085

ABSTRACT

Campylobacteriosis is one of the most common bacterial infections worldwide causing economic costs. The high prevalence of Campylobacter spp. in poultry meat is a result of several contamination and cross-contamination sources through the production chain. Moreover, survival mechanisms, such as biofilm formation, viable but nonculturable state, and antimicrobial resistance, enable its persistence during food processing. Therefore, mitigation strategies are necessary in order to avoid and/or inactivate Campylobacter at farm, abattoir, industry, and retail level. In this review, a number of potential strategies and novel technologies that could reduce the prevalence of Campylobacter in poultry meat have been identified and evaluated to provide a useful overview. At farm level for instance, biosecurity, bacteriocins, probiotics, feed and water additives, bacteriophages, and vaccination could potentially reduce colonization in chicken flocks. However, current technologies used in the chicken slaughter and processing industry may be less effective against this foodborne pathogen. Novel technologies and strategies such as cold plasma, ultraviolet light, high-intensity light pulses, pulsed electric fields, antimicrobials, and modified atmosphere packaging are discussed in this review for reducing Campylobacter contamination. Although these measures have achieved promising results, most have not been integrated within processing operations due to a lack of knowledge or an unwillingness to implement these into existing processing systems. Furthermore, a combination of existing and novel strategies might be required to decrease the prevalence of this pathogen in poultry meat and enhance food safety. Therefore, further research will be essential to assess the effectiveness of all these strategies.


Subject(s)
Campylobacter Infections/prevention & control , Campylobacter , Food Microbiology , Poultry Diseases/microbiology , Poultry/microbiology , Animals , Food Handling/methods , Poultry Diseases/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...