Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(7)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33916170

ABSTRACT

The requirements imposed on road pavements are ever increasing nowadays, necessitating the improvement of the properties of paving materials. The most commonly used paving materials include bituminous mixtures that are composed of aggregate grains bound by a bituminous binder. The properties of bitumens can be improved by modification with polymers. Among the copolymers used for modifying bitumens, styrene-butadiene-styrene, a thermoplastic elastomer, is the most commonly used. This article presents the results of tests conducted on bitumens modified with two types of styrene-butadiene-styrene copolymer (linear and radial). Two bitumen types of different penetration grades (35/50 and 160/220) were used in the experiments. The content of styrene-butadiene-styrene added to the bitumen varied between 1% and 6%. The results of the force ductility test showed that cohesion energy can be used for qualitative evaluation of the efficiency of modification of bitumen with styrene-butadiene-styrene copolymer. The determined values of the cohesion energy were subjected to the original analysis taking into account the three characteristic elongation zones of the tested binders. The performed analyses made it possible to find a parameter whose values correlate significantly with the content of styrene-butadiene-styrene copolymer in the modified bitumen. With smaller amounts of added modifier (approximately 2%), slightly better effects were obtained in the case of linear copolymer styrene-butadiene-styrene and for larger amounts of modifier (5-6%) radial copolymer styrene-butadiene-styrene was found to be more effective. This is confirmed by the changes in the binder structure, as indicated by the penetration index (PI).

2.
Materials (Basel) ; 13(23)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271782

ABSTRACT

The benefits of the use of cold recycling mixtures (CRMs) in pavement rehabilitation are associated with both the reduction of natural resource consumption by replacing them with recycled materials and the reduction of energy consumption during their production and paving. The evolution of the stiffness of CRMs in road construction and the fatigue life of pavements with CRM base layers are still being investigated. In this paper, CRMs with 1% cement content, called bitumen-stabilized materials with bitumen emulsion (BSM-Es), were examined. Mixtures that were differentiated in terms of Reclaimed Asphalt Pavement (RAP) content, as well as the amount and type of bitumen emulsions, were subjected to indirect tensile stiffness modulus (ITSM) tests at 5 °C, 13 °C, and 20 °C. The thermal sensitivities of the BSM-E mixtures were analyzed. BSM-E mixture stiffness modulus levels at various temperatures were determined using a statistical approach. On the basis of the results obtained, a discussion on the mechanistic-empirical design of flexible pavements with BSM-E base layers is presented. The potential benefits of using BSM-E materials in road construction in certain aspects of pavement life are indicated.

SELECTION OF CITATIONS
SEARCH DETAIL
...