Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Toxins (Basel) ; 15(3)2023 03 10.
Article in English | MEDLINE | ID: mdl-36977104

ABSTRACT

For the first time, microcystin-producing cyanobacteria have been detected in Khubsugul, which is ancient, pristine and one of the world's largest lakes. The microcystin synthetase genes belonged to the genera Nostoc, Microcystis and possibly Snowella spp. No microcystins were found in the water of the lake. Using the HPLC-HRMS/TOF, five microcystin congeners were identified in biofilms from stony substrates sampled in the coastal zone. The concentration of microcystins in biofilms was low: 41.95 µg g-1 d. wt. by ELISA and 55.8 µg g-1 d. wt. using HPLC. The taxonomic composition of planktonic and benthic cyanobacterial communities was determined by means of microscopy and high-throughput sequencing of 16S rDNA amplicons. Nostocales cyanobacteria dominated benthos of Lake Khubsugul and Synechococcales-plankton. The abundance of cyanobacteria was low both in plankton and benthos; there was no mass development of cyanobacteria. Hydrochemical and microbiological analyses showed that the water in the lake was clean; the number of faecal microorganisms was significantly below the acceptable guideline values. Hydrochemical and hydrophysical parameters, and the concentration of chlorophyll a, were low and within the range of values recorded in the 1970s to 1990s, and corresponded to the oligotrophic state of the lake. There were no signs of anthropogenic eutrophication of the lake and no conditions for the cyanobacterial blooms.


Subject(s)
Cyanobacteria , Microcystis , Lakes/microbiology , Plankton/genetics , Water Quality , Mongolia , Chlorophyll A , Environmental Monitoring , Microcystis/genetics
2.
Toxicon ; 121: 36-40, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27569199

ABSTRACT

Cyanobacteria were screened from the surface of diseased sponges, stone and bedrock in Lake Baikal for the presence of saxitoxin using enzyme-linked immunosorbent assay. In sequel, eight paralytic shellfish toxin (PST) variants were identified using a MALDI mass spectrometry. Microscopic examination found that Tolypothrix distorta dominated in the biofouling samples. PCR and sequencing detected sxtA gene involved in saxitoxin biosynthesis, thereby providing evidence of the PST producing potential of Baikal cyanobacterial communities inhabiting different substrates.


Subject(s)
Bacterial Toxins/biosynthesis , Cyanobacteria/isolation & purification , Lakes/microbiology , Shellfish Poisoning/microbiology , Cyanobacteria/metabolism , Enzyme-Linked Immunosorbent Assay , Siberia
3.
Arch Microbiol ; 195(7): 513-20, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23539063

ABSTRACT

Numerous studies revealed high diversity of T4-like bacteriophages in various environments, but so far, little is known about T4-like virus diversity in freshwater bodies, particularly in eutrophic lakes. The present study was aimed at elucidating molecular diversity of T4-like bacteriophages in eutrophic Lake Kotokel located near Lake Baikal by partial sequencing of the major capsid genes (g23) of T4-like bacteriophages. The majority of g23 fragments from Lake Kotokel were most similar to those from freshwater lakes and paddy fields. Despite the proximity and direct water connection between Lake Kotokel and Lake Baikal, g23 sequence assemblages from two lakes were different. UniFrac analysis showed that uncultured T4-like viruses from Lake Kotokel tended to cluster with those from the distant lake of the same trophic status. This fact suggested that the trophic conditions affected the formation of viral populations, particularly of T4-like viruses, in freshwater environments.


Subject(s)
Capsid Proteins/genetics , Genes, Viral , Lakes/virology , Myoviridae/genetics , Bacteria/isolation & purification , Capsid , Eutrophication , Genetic Variation , Lakes/microbiology , Myoviridae/classification , Phylogeny , Siberia , Soil Microbiology , Viruses/isolation & purification
4.
J Microbiol ; 51(6): 757-65, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24385352

ABSTRACT

The majority of naturally occurring biofilms contain numerous microorganisms that have not yet been cultured. Additionally, there is little information available regarding the genetic structure and species diversity of these communities. Therefore, we characterised the species diversity, structure and metagenome of biofilms grown on stones and steel plates in the littoral zone of Lake Baikal (East Siberia, Russia) by applying three different approaches. First, light microscopy enabled identification of the species diversity of biofilm-forming cyanobacteria on different substrates with the dominance of Rivularia rufescens, Tolypothrix limbata, Chamaesiphon fuscus, Ch. subglobosus, and Heteroleibleinia pusilla. Additionally, scanning electron microscopy was used to show the spatial structure of biofilms. Finally, sequence analysis of 30,660 16S rRNA clones indicated a high diversity within the biofilm communities, with the majority of the microbes being closely related to Cyanobacteria (8-46% sequences), Proteobacteria (14-43%), and Bacteroidetes (10-41%). Rivularia sp., Pseudanabaena sp., and Chamaesiphon spp. were the dominant cyanobacterial phylotypes.


Subject(s)
Biodiversity , Biofilms , Cyanobacteria/physiology , Geologic Sediments/microbiology , Cyanobacteria/classification , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , Ecosystem , Lakes/analysis , Molecular Sequence Data , Phylogeny , Siberia
SELECTION OF CITATIONS
SEARCH DETAIL
...