Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 14103, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38890376

ABSTRACT

The dissolution of soluble rocks (gypsum/anhydrite) beneath the Mosul Dam by water seepage has been observed upon the initial impoundment; consequently, several sinkholes have been manifested in the vicinity of the dam site. Traditional grouting has been envisaged as a potential remedy; however this measure has not eradicated the problem. The main purpose of this study is to overcome the solubility of the gypsum/anhydrite rocks using chemical grouts. Rock samples were acquired from the Fatha Formation outcrop and problematic layers of brecciated gypsum situated at varying depths beneath the Mosul Dam. Two commercially available liquid polymers, polyurethane (PU) and a mixture of acrylic and cement (ARC) were used to investigate their sealing performance in halting of the solubility of the rocks (gypsum/anhydrite). To simulate the dissolution phenomenon under the influence of artificial hydraulic pressure of the dam and the water flow in its abutments, two distinct laboratory models were devised. The outcomes from the experimental study on both untreated and treated samples revealed that the acrylic-cement composite (ARC) and polyurethane (PU) are influential polymers in halting the solubility of the gypsum rock samples under both factors of water pressure and high-velocity water flow.

2.
Sci Total Environ ; 902: 166576, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37633383

ABSTRACT

Wind erosion is a significant environmental challenge in arid and semi-arid regions, and artificial crust creation on the soil surface has emerged as an effective approach to mitigate this phenomenon. Various methods of crust formation have been proposed to combat wind erosion in these regions. However, a comprehensive study assessing the durability of these crusts against environmental stresses has been lacking. Hence, the primary objective of the present study is to address this critical issue by evaluating the erodibility and surface strength of alkali-activated slag crusts in response to various environmental stressors. These stressors encompass ultraviolet radiation, heating and cooling cycles, wetting and drying cycles, and freezing and thawing cycles. Through wind tunnel tests, erosion rates were measured under different wind velocities and saltation bombardment conditions, while penetrometer tests were conducted to analyze surface strength. The results demonstrate that alkali-activated cementation produced robust crusts, exhibiting an impressive reduction of over 99.9 % in erosion rates compared to untreated samples. However, the introduction of environmental stresses led to a fivefold increase in erosion rates. Freeze and thaw cycles had the most detrimental effect on the alkali-activated cement crusts while heating and cooling cycles had a relatively minor impact. The wetting and drying cycles and UV radiation ranked second and third, respectively, in terms of their destructive effects on crust erodibility. Despite the observed effects, the crusts maintained their efficiency even when subjected to severe environmental stresses. Notably, the erosion rate of the treated crusts after enduring the most severe studied stress, that is five freeze and thaw cycles, was over 250 times lower than that of the untreated samples.

3.
J Environ Manage ; 344: 118633, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37478719

ABSTRACT

This paper aims to mitigate wind erosion of soil by employing alkali-activated slag. Wind tunnel tests were conducted on soil samples treated with varying percentages of slag at different wind speeds (7, 14, 21, and 28 m/s) and under a sand bombardment condition. In the absence of saltating particles, the erodibility ratios of the alkali-activated slag-treated samples with weight percentages of 1%, 2%, 4%, and 6% to the untreated sample at the highest wind speed (i.e., 28 m/s) correspond to 0.19%, 0.10%, 0.08%, and 0.06%, respectively. Moreover, in the presence of saltating particle bombardment, these samples exhibited erodibility reductions of 98.5%, 98.8%, 99.4%, and 99.6% compared to the untreated sample. The strength of the formed crusts, determined by penetrometer tests, increased significantly for the treated samples, ranging from 1300 to 6500 times greater than the untreated sample. The complementary analysis using x-ray diffraction and field emission scanning electron microscopy revealed the formation of albite and anorthite crystals along with the formation of calcium aluminosilicate hydrate, sodium aluminosilicate hydrate, and calcium silicate hydrate gels in the cementation process. Overall, the study highlights the effectiveness of alkali-activated slag in forming strong crusts that provide substantial protection against wind erosion, resulting in a significant decrease in wind erodibility.


Subject(s)
Alkalies , Soil , Alkalies/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...