Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Type of study
Language
Publication year range
1.
Int J Biol Macromol ; 227: 736-748, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36549615

ABSTRACT

Piperine is an alkaloid mostly found in the fruits of several species of the Piper genus, and its anti-inflammatory potential is already known. However, its therapeutic applications still need to be better explored due to the low aqueous solubility of this active. To overcome this drawback, the objective of this work was to evaluate the efficiency of the nanoencapsulation of the compound as well as its incorporation into hyaluronic acid/alginate-based biomembranes. Polymeric nanoparticles composed of Eudragit S100 and Poloxamer 188 were obtained by the nanoprecipitation technique, obtaining spherical nanosized particles with an average diameter of 122.1 ± 2.0 nm, polydispersity index of 0.266, and encapsulation efficiency of 76.2 %. Hyaluronic acid/sodium alginate membranes were then prepared and characterized. Regarding permeation, a slow passage rate was observed until the initial 14 h, when an exponential increase in the recovered drug concentration began to occur. The in vivo assay showed a reduction in inflammation up to 43.6 %, and no cytotoxicity was observed. The results suggested the potential of the system developed for the treatment of inflammatory skin diseases.


Subject(s)
Alkaloids , Dermatitis , Nanoparticles , Humans , Hyaluronic Acid , Alginates , Alkaloids/pharmacology , Particle Size
2.
J Med Microbiol ; 71(9)2022 Sep.
Article in English | MEDLINE | ID: mdl-36099168

ABSTRACT

Introduction. Plants have been used as medicines for centuries to treat human diseases. Studies with plants are extremely important for the development of future drugs that can benefit the human population.Hypothesis/Gap Statement. With the emergence of pathogens resistant to antimicrobial agents, there is an urgent need to direct research towards the discovery of new antimicrobials.Aim. In this study, Spondias purpurea L. (Anacardiaceae) was evaluated for its antimicrobial activity, antioxidant activity and cytotoxicity.Methodology. Antimicrobial activity was evaluated by the MIC using the 96-well plate microdilution technique of ethanolic, hexanic and dicloromethanic extracts of dried S. purpurea leaves against bacteria, yeast and filamentous fungi. The antioxidant activity of extracts was evaluated by the 2,2-diphenyl-1-picrylhydrazine (DPPH) method. To evaluate the safety of extracts, a cytotoxicity study against HaCat, J774 and HepG2 cells was performed.Results. The extracts had no activity against the bacteria at the maximum concentration of 5.0 mg ml-1, but showed fungistatic action against Candida species and dermatophytes. The ethanolic extract showed 88 % antioxidant activity and showed no significant cytotoxicity against the previously mentioned cells.Conclusion. This study showed that the 100 % ethanolic (EtOH) extract was favourable for antifungal and antioxidant activities and did not present significant cytotoxicity against the three studied cell lines, indicating that S. purpurea leaves are promising for the development of new antimicrobials.


Subject(s)
Anacardiaceae , Anti-Infective Agents , Anti-Bacterial Agents , Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Bacteria , Humans , Plant Extracts/pharmacology
3.
Exp Appl Acarol ; 87(4): 351-363, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36001248

ABSTRACT

The tick Rhipicephalus microplus (Canestrini) is a major economic hurdle to the global livestock industry. The incorrect and indiscriminate control carried out by synthetic chemical compounds has contributed to the emergence of parasite resistance present today to many products available in the veterinary market. Effective, economically viable and potentially safe alternatives need to be investigated, including herbal medicine and biological control by entomopathogenic fungi. In this study, extracts from Achyrocline satureioides (Lam.) DC. obtained by extraction with solvents of different polarities associated and not associated with the entomopathogenic fungus Beauveria bassiana (Balsamo-Crivelli) Vuillemin were evaluated on different stages of the life cycle of R. microplus. The activity of plant extracts, fungus and their associations in ticks was analyzed in vitro through the adult immersion test, larval packet test and larval immersion test. The highest efficacy on engorged females (43.3%) was reached by the hexanic partition (ASh) at 5 mg/mL + fungus, reducing larval hatchability. ASh associated with B. bassiana also caused high mortality of larvae, reaching LC50 of 6.23 and 2.65 mg/mL in the packet and immersion tests, respectively. The results obtained showed that extracts, when used in combination with the fungus, have their action enhanced, reaching 100% mortality of larvae. Among the evaluated methodologies, it was observed that the larval immersion test allows better assessment, due to the time of contact with the larvae. The results obtained with A. satureioides associated with the fungus are considered promising and open new perspectives for future product development.


Subject(s)
Achyrocline , Beauveria , Rhipicephalus , Animals , Female , Larva/microbiology , Pest Control, Biological/methods , Plant Extracts/pharmacology
4.
ACS Appl Bio Mater ; 5(8): 3667-3677, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35853231

ABSTRACT

In this study, we present an unprecedented study on the influence of parameters such as dyeing, softening, and number of washes on the maintenance of the antibacterial activity of polyamide fabrics containing zinc oxide nanoparticles (ZnO NPs) impregnated by a simple and easy-to-scale technique. ZnO NPs were synthesized by the sol-gel method at different reaction times (1, 3, and 24 h), followed by surface modification with (3-glycidyloxypropyl)trimethoxysilane (GPTMS) and water dispersion. The reaction times of ZnO NP synthesis were modified to evaluate their influence on particle size and antibacterial activity after impregnation in fabrics. The presence of ZnO NPs in fabrics was observed by different techniques such as X-ray diffraction, infrared vibrational spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The mean diameter values of the ZnO NPs calculated in this work from different techniques remained at 5 nm regardless of the reaction time revealing the efficient control of the nanoparticle size, important for desired applications as ZnO NPs smaller than 10 nm show improved antibacterial activity. The antibacterial activity of fabrics containing ZnO NPs indicated that polyamide fabrics after impregnation with ZnO NPs synthetized have great and similar biocidal potential against Staphylococcus aureus and Escherichia coli both with and without the presence of a fabric softener or a dye. The antibacterial behavior of the different polyamide fabrics remained after 10 and 20 washing cycles. The results shown in this study demonstrated the possibility of obtaining polyamide fabrics containing ZnO NPs with the antibacterial activity resistant to chemical treatments used by industries as a softener or a dye. The results also reveal the maintenance of the antimicrobial activity of fabrics after several washing cycles. The reaction time of 1 for the production of ZnO NPs and the versatility of polyamide fabrics allow their application in different environments to control microbial infections.


Subject(s)
Nanoparticles , Zinc Oxide , Anti-Bacterial Agents/pharmacology , Escherichia coli , Microbial Sensitivity Tests , Nanoparticles/chemistry , Nylons , Zinc Oxide/pharmacology
5.
Photodiagnosis Photodyn Ther ; 34: 102273, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33798749

ABSTRACT

Antimicrobial Photodynamic Therapy (A-PDT) is a modern and non-invasive therapeutic modality. Nanostructures like the polymeric nanocapsules (NC) has proved to be a system that has enormous potential to improve current antimicrobial therapeutic practice. NC of Zinc phenyl-thio-phthalocyanine and Amphotericin B association (NC/ZnS4Pc + AMB) built with poly(lactide-co-glycolide) (PLGA) 50:50 using the preformed polymer interfacial deposition method were developed at a 0.05 mg mL- 1 theoretical concentration to improve antifungal activity with two actives association and assistance from PDTa. It showed an average particle diameter of 253.8 ±â€¯17.3, an average polydispersity index of 0.36 ±â€¯0.01, and a negative Zeta potential average of -31.03 ±â€¯5.54 for 158 days. UV-vis absorption and emission spectroscopy analyses did not show changes in photophysical properties in the steady-state of NC/ZnS4Pc + AMB counterparts free ZnS4Pc. The encapsulation percentage of actives was 89.24 % and 7.40 % for ZnS4Pc and AMB, respectively. Cell viability assay using NIH/3T3 ATCC® CRL-1658 ™ cells line showed no cytotoxicity for the concentrations tested. The photodynamic activity assay using NC/ZnS4Pc + AMB diluted showed fungal toxicity against Candida albicans yeast with energetic fluences of 12 J.cm-2 and 25 J.cm-2 by a decrease in cell viability. The MFC assay demonstrated a fungistatic activity for the conditions employed in the PDTa assay. The results show that NC/ZnS4Pc + AMB is a promising nanomaterial for antimicrobial inactivation using PDT.


Subject(s)
Nanocapsules , Photochemotherapy , Amphotericin B , Antifungal Agents/pharmacology , Candida albicans , Indoles , Isoindoles , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Polymers , Zinc
6.
Antibiotics (Basel) ; 9(12)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322526

ABSTRACT

Dermatophyte fungal infections are difficult to treat because they need long-term treatments. 4-Nerolidylcatechol (4-NC) is a compound found in Piper umbellatum that has been reported to demonstrate significant antifungal activity, but is easily oxidizable. Due to this characteristic, the incorporation in nanostructured systems represents a strategy to guarantee the compound's stability compared to the isolated form and the possibility of improving antifungal activity. The objective of this study was to incorporate 4-NC into polymeric nanoparticles to evaluate, in vitro and in vivo, the growth inhibition of Microsporum canis. 4-NC was isolated from fresh leaves of P. umbellatum, and polymer nanoparticles of polycaprolactone were developed by nanoprecipitation using a 1:5 weight ratio (drug:polymer). Nanoparticles exhibited excellent encapsulation efficiency, and the antifungal activity was observed in nanoparticles with 4-NC incorporated. Polymeric nanoparticles can be a strategy employed for decreased cytotoxicity, increasing the stability and solubility of substances, as well as improving the efficacy of 4-NC.

7.
Nat Prod Res ; 34(23): 3423-3427, 2020 Dec.
Article in English | MEDLINE | ID: mdl-30784314

ABSTRACT

Dermatophytosis is a dermic disease caused by fungi. The aim of this study was to search anti-dermatophyte bioactive compounds in Piper umbellatum leaves. Cytotoxicity evaluation was performed against MRC-5 and HepG2 as a selectivity parameter. Crude ethanol extract presented MIC value of 39.1 µg/mL against M. canis and no cytotoxicity to Hep G2 (human liver cancer) and MRC-5 (normal lung fibroblast). 4-nerolydilcatechol was isolated from P. umbellatum ethanolic extract. MIC values for 4-NC were 7.6µM to M. canisand 15.6µM to Trichophyton rubrum. 4-NC presented activity against M. canis14 times lower than to MRC-5 (non-tumoral human cell line), which suggest selective activity for this fungus. Molecular modeling suggests 4-NC could bind to CYP51, present in lanosterol synthesis, blocking fungi development. In conclusion, P. umbellatum crude ethanol extract and 4-NC demonstrated high and selective in vitro antifungal activity.[Formula: see text].


Subject(s)
Antifungal Agents/pharmacology , Arthrodermataceae/drug effects , Catechols/pharmacology , Microsporum/drug effects , Piper/chemistry , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Biological Assay , Catalytic Domain , Catechols/chemistry , Catechols/metabolism , Dermatomycoses/microbiology , Drug Evaluation, Preclinical/methods , Ethanol/chemistry , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Hep G2 Cells , Humans , Microbial Sensitivity Tests , Models, Molecular , Plant Extracts/chemistry , Plant Leaves/chemistry , Sterol 14-Demethylase/chemistry , Sterol 14-Demethylase/metabolism
8.
s.l; s.n; 2020. 16 p. ilus.
Non-conventional in English | Sec. Est. Saúde SP, CONASS, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1146694

ABSTRACT

Dermatophyte fungal infections are difficult to treat because they need long-term treatments. 4-Nerolidylcatechol (4-NC) is a compound found in Piper umbellatum that has been reported to demonstrate significant antifungal activity, but is easily oxidizable. Due to this characteristic, the incorporation in nanostructured systems represents a strategy to guarantee the compound's stability compared to the isolated form and the possibility of improving antifungal activity. The objective of this study was to incorporate 4-NC into polymeric nanoparticles to evaluate, in vitro and in vivo, the growth inhibition of Microsporum canis. 4-NC was isolated from fresh leaves of P. Umbellatum, and polymer nanoparticles of polycaprolactone were developed by nanoprecipitation using a 1:5 weight ratio (drug:polymer). Nanoparticles exhibited excellent encapsulation efficiency, and the antifungal activity was observed in nanoparticles with 4-NC incorporated. Polymeric nanoparticles can be a strategy employed for decreased cytotoxicity, increasing the stability and solubility of substances, as well as improving the efficacy of 4-NC(AU).


Subject(s)
Nanoparticles/therapeutic use , Microsporum/growth & development , Antifungal Agents
SELECTION OF CITATIONS
SEARCH DETAIL