Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(23): 33623-33637, 2024 May.
Article in English | MEDLINE | ID: mdl-38684615

ABSTRACT

We present an analytical method to detect and quantify residues of currently used pesticides (CUPs), which include 31 active ingredients (ai) and seven transformation products (TPs) in tropical and agricultural soils of Cuba. Ten isotopically labeled analogous compounds served as internal standards (IL-IS). The novelty of this research is the inclusion of different tropical soils type scarcely studied for CUPs and TPs, based on the QuEChERS (quick, easy, cheap, effective, rugged and safe) method, followed by chromatography tandem mass spectrometry. All figures of merit proved to be satisfactory according to SANTE guidelines 2020 and 2021. Matrix effects (ME) calculated by the external standard method were significant (|ME| > 20% for almost all compounds; grand mean ± standard deviation (STD) 104 ± 108%) in all soils. The internal standard method compensated ME to non-significant levels (8 ± 50%), even for analytes with a non-structure identical IL-IS (STD, 13 ± 57%). Repeatability (relative standard deviation, RSDr) and reproducibility (RSDR) for skeletic regosol (SR) were 7.5 ± 2.8% and 11.7 ± 4.7%, respectively. Absolute (quantified for 11 analytes with structure identical IL-IS) and relative recovery from SR was 92 ± 13% (mean ± STD) and 90 ± 12%, respectively. Limits of quantification for SR ranged from 0.1 to 10 ng/g, except metalaxyl and oxyfluorfen (25 ng/g each). Linearity of matrix-matched (MM) calibration curves (5 to 100 ng/g) had an R2 of ≥ 0.99 for all soils and almost all analytes. The method was successfully applied to 30 real soil samples.


Subject(s)
Agriculture , Soil Pollutants , Soil , Tandem Mass Spectrometry , Cuba , Soil Pollutants/analysis , Soil/chemistry , Tandem Mass Spectrometry/methods , Pesticide Residues/analysis , Pesticides/analysis , Gas Chromatography-Mass Spectrometry , Reproducibility of Results , Environmental Monitoring/methods
2.
Environ Monit Assess ; 194(6): 441, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35596091

ABSTRACT

Cuba is a country with considerable potential for economic growth, and special efforts are made to increase the agricultural output. As food production depends on the quality of soils, heavy metal concentrations were measured in 39 soils in the province of Mayabeque, Cuba, and interpreted in light of anthropogenic activities and pedogenic conditions (soil type and properties). With median concentrations of 1.8 Cd, 60.3 Cr, 48.1 Cu, 36.2 Ni, 16.7 Pb, 55.0 Zn, and 0.1 mg/kg Hg, soils of Mayabeque were mostly below Cuban quality reference values (QRV) representing benchmarks of quality standards but no official threshold values. Only Cd concentrations were in many cases above the QRV of 0.6 mg/kg and some Cu concentrations above the one of 83 mg/kg. While Cd, Cr, and Ni concentrations were rather pedogenically driven, Cu, Pb, Zn, and Hg contents were rather anthropogenically influenced. When evaluated statistically, Cd and Cr showed most times a significant influence of both sources. In contrast, Ni and Zn could not be significantly related with the origins investigated in this study. Hence, the allocation of heavy metal concentrations to pedogenic or anthropogenic contamination or pollution sources is tentative and needs further investigations. Nevertheless, the present data adds information on soil heavy metal concentrations in the Caribbean region, serves as reference before further industrial development, and sets the ground for adaptation of the QRV for Cd and possibly future national environmental standards.


Subject(s)
Mercury , Metals, Heavy , Soil Pollutants , Cadmium , China , Cuba , Environmental Monitoring , Lead , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis
3.
Chemosphere ; 199: 409-416, 2018 May.
Article in English | MEDLINE | ID: mdl-29453067

ABSTRACT

Assessing the bioaccessibility of organic pollutants in contaminated soils is considered a complement to measurements of total concentrations in risk assessment and legislation. Consequently, methods for its quantification require validation with historically contaminated soils. In this study, 35 such soils were obtained from various locations in Switzerland and Cuba. They were exposed to different pollution sources (e.g., pyrogenic and petrogenic) at various distance (i.e., urban to rural) and were subject to different land use (e.g., urban gardening and forest). Passive equilibrium sampling with polyoxymethylene was used to determine freely dissolved concentrations (Cfree) of polycyclic aromatic hydrocarbons (PAHs), while sorptive bioaccessibility extraction (SBE) with silicone rods was used to determine the bioaccessible PAH concentrations (Cbioacc) of these soils. The organic carbon partition coefficients of the soils were highest for skeet soils, followed by traffic, urban garden and rural soils. Lowest values were obtained from soil exposed to petrogenic sources. Applicability of SBE to quantify Cbioacc was restricted by silicone rod sorption capacity, as expressed quantitatively by the Sorption Capacity Ratio (SCR); particularly for soils with very high KD. The source of contamination determined bioaccessible fractions (fbioacc). The smallest fbioacc were obtained with skeet soils (15%), followed by the pyrogenically influenced soils, rural soils, and finally, the petrogenically contaminated soil (71%). In conclusion, we present the potential and limitations of the SBE method to quantify bioaccessibility in real soils. These results can be used for additional development of this and similar bioaccessibility methods to guarantee sufficient sorption capacity to obtain reliable results.


Subject(s)
Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/analysis , Biological Availability , Cuba , Environmental Monitoring/methods , Environmental Pollution/analysis , Polycyclic Aromatic Hydrocarbons/pharmacokinetics , Risk Assessment , Soil Pollutants/pharmacokinetics , Switzerland
4.
Environ Sci Pollut Res Int ; 24(14): 12860-12870, 2017 May.
Article in English | MEDLINE | ID: mdl-28364208

ABSTRACT

Cuba is a country in transition with a considerable potential for economic growth. Soils are recipients and integrators of chemical pollution, a frequent negative side effect of increasing industrial activities. Therefore, we established a soil monitoring network to monitor polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in soils of Mayabeque, a Cuban province southeast of Havana. Concentrations of the sum of the 16 US EPA PAHs and of the seven IRMM PCBs in soils from 39 locations ranged from 20 to 106 µg kg-1 and from 1.1 to 7.6 µg kg-1, respectively. While such concentrations can be considered as low overall, they were in several cases correlated with the distance of sampling sites to presumed major emission sources, with some of the concomitantly investigated source diagnostic PAH ratios, and with black carbon content. The presented data adds to the limited information on soil pollution in the Caribbean region and serves as a reference time point before the onset of a possible further industrial development in Cuba. It also forms the basis to set up and adapt national environmental standards.


Subject(s)
Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Caribbean Region , Cuba , Environmental Monitoring , Soil/chemistry , Soil Pollutants
SELECTION OF CITATIONS
SEARCH DETAIL
...