Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Physiol ; 236(10): 6974-6987, 2021 10.
Article in English | MEDLINE | ID: mdl-33682941

ABSTRACT

Octreotide (OCT) is used to inhibit hormone secretion and growth in somatotroph tumors, although a significant percentage of patients are resistant. It has also been tested in nonfunctioning (NF) tumors but with poor results, with these outcomes having been associated with SSTR2 levels and impaired signaling. We investigated whether OCT inhibitory effects can be improved by TGF-ß1 in functioning and nonfunctioning somatotroph tumor cells. OCT effects on hormone secretion and proliferation were analyzed in the presence of TGF-ß1 in WT and SSTR2-overexpressing secreting GH3 and silent somatotroph tumor cells. The mechanism underlying these effects was assessed by studying SSTR and TGFßR signaling pathways mediators. In addition, we analyzed the effects of OCT/TGF-ß1 treatment on tumor growth and cell proliferation in vivo. The inhibitory effects of OCT on GH- and PRL-secretion and proliferation were improved in the presence of TGF-ß1, as well as by SSTR2 overexpression. The OCT/TGF-ß1 treatment induced downregulation of pERK1/2 and pAkt, upregulation of pSmad3, and inhibition of cyclin D1. In vivo experiments showed that OCT in the presence of TGF-ß1 blocked tumor volume growth, decreased cell proliferation, and increased tumor necrosis. These results indicate that SSTR2 levels and the stimulation of TGF-ß1/TGFßR/Smad2/3 pathway are important for strengthening the antiproliferative and antisecretory effects of OCT.


Subject(s)
Antineoplastic Agents, Hormonal/pharmacology , Cell Proliferation/drug effects , Octreotide/pharmacology , Pituitary Neoplasms/drug therapy , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Somatotrophs/drug effects , Transforming Growth Factor beta1/pharmacology , Animals , Cell Line , Female , Humans , Mice, Nude , Phosphorylation , Pituitary Neoplasms/genetics , Pituitary Neoplasms/metabolism , Pituitary Neoplasms/pathology , Rats , Receptors, Somatostatin/genetics , Receptors, Somatostatin/metabolism , Signal Transduction , Somatotrophs/metabolism , Somatotrophs/pathology , Tumor Burden/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...