Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Neurochem ; 160(2): 203-217, 2022 01.
Article in English | MEDLINE | ID: mdl-34862972

ABSTRACT

Neurons are the largest known cells, with complex and highly polarized morphologies and consist of a cell body (soma), several dendrites, and a single axon. The establishment of polarity necessitates initial axonal outgrowth in concomitance with the addition of new membrane to the axon's plasmalemma. Axolemmal expansion occurs by exocytosis of plasmalemmal precursor vesicles primarily at the neuronal growth cone membrane. The multiprotein exocyst complex drives spatial location and specificity of vesicle fusion at plasma membrane. However, the specific participation of its different proteins on neuronal differentiation has not been fully established. In the present work we analyzed the role of Sec3, a prominent exocyst complex protein on neuronal differentiation. Using mice hippocampal primary cultures, we determined that Sec3 is expressed in neurons at early stages prior to neuronal polarization. Furthermore, we determined that silencing of Sec3 in mice hippocampal neurons in culture precluded polarization. Moreover, using in utero electroporation experiments, we determined that Sec3 knockdown affected cortical neurons migration and morphology during neocortex formation. Our results demonstrate that the exocyst complex protein Sec3 plays an important role in axon formation in neuronal differentiation and the migration of neuronal progenitors during cortex development.


Subject(s)
Cerebral Cortex/embryology , Neurogenesis/physiology , Neurons , Vesicular Transport Proteins/metabolism , Animals , Cell Differentiation/physiology , Cell Movement/physiology , Cerebral Cortex/metabolism , Mice , Neurons/cytology , Neurons/metabolism
2.
Sci Rep ; 7(1): 7703, 2017 08 09.
Article in English | MEDLINE | ID: mdl-28794445

ABSTRACT

During cortical development, neurons undergo polarization, oriented migration and layer-type differentiation. The biological and biochemical mechanisms underlying these processes are not completely understood. In neurons in culture we showed that IGF-1 receptor activation is important for growth cone assembly and axonal formation. However, the possible roles of the insulin like growth factor-1 receptor (IGF-1R) on neuronal differentiation and polarization in vivo in mammals have not yet been studied. Using in utero electroporation, we show here that the IGF-1R is essential for neocortical development. Neurons electroporated with a shRNA targeting IGF-1 receptor failed to migrate to the upper cortical layers and accumulated at the ventricular/subventricular zones. Co-electroporation with a constitutively active form of PI3K rescued migration. The change of the morphology from multipolar to bipolar cells was also attenuated. Cells lacking the IGF-1 receptor remain arrested as multipolar forming a highly disorganized tissue. The typical orientation of the migrating neurons with the Golgi complex oriented toward the cortical upper layers was also affected by electroporation with shRNA targeting IGF-1 receptor. Finally, cells electroporated with the shRNA targeting IGF-1 receptor were unable to form an axon and, therefore, neuron polarity was absent.


Subject(s)
Cell Movement/genetics , Cell Polarity/genetics , Cerebral Cortex/embryology , Cerebral Cortex/metabolism , Neurons/metabolism , Organogenesis/genetics , Receptor, IGF Type 1/genetics , Animals , Axons/metabolism , Female , Mice , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptor, IGF Type 1/metabolism , Signal Transduction
3.
J Neurochem ; 143(1): 11-29, 2017 10.
Article in English | MEDLINE | ID: mdl-28677143

ABSTRACT

The amyloid precursor protein (APP) is a type I transmembrane glycoprotein better known for its participation in the physiopathology of Alzheimer disease as the source of the beta amyloid fragment. However, the physiological functions of the full length protein and its proteolytic fragments have remained elusive. APP was first described as a cell-surface receptor; nevertheless, increasing evidence highlighted APP as a cell adhesion molecule. In this review, we will focus on the current knowledge of the physiological role of APP as a cell adhesion molecule and its involvement in key events of neuronal development, such as migration, neurite outgrowth, growth cone pathfinding, and synaptogenesis. Finally, since APP is over-expressed in Down syndrome individuals because of the extra copy of chromosome 21, in the last section of the review, we discuss the potential contribution of APP to the neuronal and synaptic defects described in this genetic condition. Read the Editorial Highlight for this article on page 9. Cover Image for this issue: doi. 10.1111/jnc.13817.


Subject(s)
Amyloid beta-Protein Precursor/physiology , Brain/growth & development , Brain/metabolism , Cell Adhesion Molecules/physiology , Neurogenesis/physiology , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/chemistry , Animals , Cell Adhesion Molecules/chemistry , Cell Movement/physiology , Down Syndrome/metabolism , Humans , Neurons/physiology
4.
Mol Neurobiol ; 54(8): 6085-6096, 2017 Oct.
Article in English | MEDLINE | ID: mdl-27699600

ABSTRACT

Three early signals of asymmetry have been described to occur in a single neurite of neurons at stage 2 of differentiation (before polarization) and shown to be essential for neuronal polarization: (i) accumulation of stable microtubules, (ii) enrichment of the plasma membrane with activatable IGF-1r, and (iii) polarized transport of the microtubular motor KIF5C. Here, we studied the possible relationship between these three phenomena. Our results show that the activatable (membrane-inserted) IGF-1r and stable microtubules accumulate in the same neurite of cells at stage 2. The polarized insertion of IGF-1r depends on microtubule dynamics as shown using drugs which modify microtubule stability. Silencing of KIF5C expression prevents the polarized insertion of IGF-1r into the neuronal plasmalemma and neuronal polarization. Syntaxin 6 and VAMP4, necessary for the polarized insertion of the IGF-1r, are associated to vesicles carried by the microtubular motor KIF5C and is transported preferentially to the neurite where KIF5C accumulates. We conclude that the enrichment of stable microtubules in the future axon enhances KIF5C-mediated vesicular transport of syntaxin 6 and VAMP4, which in turn mediates the polarized insertion of IGF-1r in the plasmalemma, a key step for neuronal polarization. We herewith establish a mechanistic link between three early polarity events necessary for the establishment of neuronal polarity.


Subject(s)
Cell Polarity/physiology , Kinesins/metabolism , Microtubules/metabolism , Neurons/metabolism , Receptor, IGF Type 1/metabolism , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Polarity/drug effects , Cells, Cultured , Cytochalasin D/pharmacology , Hippocampus/cytology , Hippocampus/drug effects , Hippocampus/metabolism , Microtubules/drug effects , Neurites/drug effects , Neurites/metabolism , Neurons/cytology , Neurons/drug effects , Nocodazole/pharmacology , Nucleic Acid Synthesis Inhibitors/pharmacology , Paclitaxel/pharmacology , Qa-SNARE Proteins/metabolism , R-SNARE Proteins/metabolism , Rats , Tubulin Modulators/pharmacology
5.
Cell Discov ; 1: 15023, 2015.
Article in English | MEDLINE | ID: mdl-27462422

ABSTRACT

The establishment of polarity necessitates initial axonal outgrowth and, therefore, the addition of new membrane to the axon's plasmalemma. Axolemmal expansion occurs by exocytosis of plasmalemmal precursor vesicles (PPVs) primarily at the neuronal growth cone. Little is known about the SNAREs family proteins involved in the regulation of PPV fusion with the neuronal plasmalemma at early stages of differentiation. We show here that five SNARE proteins (VAMP2, VAMP4, VAMP7, Syntaxin6 and SNAP23) were expressed by hippocampal pyramidal neurons before polarization. Expression silencing of three of these proteins (VAMP4, Syntaxin6 and SNAP23) repressed axonal outgrowth and the establishment of neuronal polarity, by inhibiting IGF-1 receptor exocytotic polarized insertion, necessary for neuronal polarization. In addition, stimulation with IGF-1 triggered the association of VAMP4, Syntaxin6 and SNAP23 to vesicular structures carrying the IGF-1 receptor and overexpression of a negative dominant form of Syntaxin6 significantly inhibited exocytosis of IGF-1 receptor containing vesicles at the neuronal growth cone. Taken together, our results indicated that VAMP4, Syntaxin6 and SNAP23 functions are essential for regulation of PPV exocytosis and the polarized insertion of IGF-1 receptor and, therefore, required for initial axonal elongation and the establishment of neuronal polarity.

SELECTION OF CITATIONS
SEARCH DETAIL