Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 20(13): 5732-5742, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38924093

ABSTRACT

New Bayesian parameter estimation methods have the capability to enable more physically realistic and reliable molecular dynamics (MD) simulations by providing accurate estimates of uncertainties of force-field (FF) parameters and associated properties. However, the choice of which Bayesian parameter estimation algorithm to use has not been widely investigated, despite its impact on the effective exploration of parameter space. Here, using a case example of the Embedded Atom Method (EAM) FF parameters, we investigated the ramifications of several of the algorithm choices. We found that Ensemble Slice Sampling (ESS) and Affine-Invariant Ensemble Sampling (AIES) demonstrate a new level of superior performance, culminating in more accurate parameter and property estimations with tighter uncertainty bounds, compared to traditional methods such as Metropolis-Hastings (MH), Gradient Search (GS), and Uniform Random Sampler (URS). We demonstrate that Bayesian Uncertainty Quantification with ESS and AIES leads to significantly more accurate and reliable predictions of the FF parameters and properties. The results suggest that ESS and AIES should be used to obtain more accurate parameter and uncertainty estimations while providing deeper physical insights.

2.
J Chem Theory Comput ; 19(19): 6686-6703, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37756641

ABSTRACT

Hydrogen gas (H2) is a clean and renewable energy source, but the lack of efficient and cost-effective storage materials is a challenge to its widespread use. Metal-organic frameworks (MOFs), a class of porous materials, have been extensively studied for H2 storage due to their tunable structural and chemical features. However, the large design space offered by MOFs makes it challenging to select or design appropriate MOFs with a high H2 storage capacity. To overcome these challenges, we present a data-driven computational approach that systematically designs new functionalized MOFs for H2 storage. In particular, we showcase the framework of a hybrid particle swarm optimization integrated genetic algorithm, grand canonical Monte Carlo (GCMC) simulations, and our in-house MOF structure generation code to design new MOFs with excellent H2 uptake. This automated, data driven framework adds appropriate functional groups to IRMOF-10 to improve its H2 adsorption capacity. A detailed analysis of the top selected MOFs, their adsorption isotherms, and MOF design rules to enhance H2 adsorption are presented. We found a functionalized IRMOF-10 with an enhanced H2 adsorption increased by ∼6 times compared to that of pure IRMOF-10 at 1 bar and 77 K. Furthermore, this study also utilizes machine learning and deep learning techniques to analyze a large data set of MOF structures and properties, in order to identify the key factors that influence hydrogen adsorption. The proof-of-concept that uses a machine learning/deep learning approach to predict hydrogen adsorption based on the identified structural and chemical properties of the MOF is demonstrated.

3.
Phys Chem Chem Phys ; 25(6): 4408-4443, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36722861

ABSTRACT

In tribology, a considerable number of computational and experimental approaches to understand the interfacial characteristics of material surfaces in motion and tribological behaviors of materials have been considered to date. Despite being useful in providing important insights on the tribological properties of a system, at different length scales, a vast amount of data generated from these state-of-the-art techniques remains underutilized due to lack of analysis methods or limitations of existing analysis techniques. In principle, this data can be used to address intractable tribological problems including structure-property relationships in tribological systems and efficient lubricant design in a cost and time effective manner with the aid of machine learning. Specifically, data-driven machine learning methods have shown potential in unraveling complicated processes through the development of structure-property/functionality relationships based on the collected data. For example, neural networks are incredibly effective in modeling non-linear correlations and identifying primary hidden patterns associated with these phenomena. Here we present several exemplary studies that have demonstrated the proficiency of machine learning in understanding these critical factors. A successful implementation of neural networks, supervised, and stochastic learning approaches in identifying structure-property relationships have shed light on how machine learning may be used in certain tribological applications. Moreover, ranging from the design of lubricants, composites, and experimental processes to studying fretting wear and frictional mechanism, machine learning has been embraced either independently or integrated with optimization algorithms by scientists to study tribology. Accordingly, this review aims at providing a perspective on the recent advances in the applications of machine learning in tribology. The review on referenced simulation approaches and subsequent applications of machine learning in experimental and computational tribology shall motivate researchers to introduce the revolutionary approach of machine learning in efficiently studying tribology.

4.
RSC Adv ; 11(28): 17064-17071, 2021 May 06.
Article in English | MEDLINE | ID: mdl-35479687

ABSTRACT

Solvent plays a key role in biological functions, catalysis, and drug delivery. Metal-organic frameworks (MOFs) due to their tunable functionalities, porosities and surface areas have been recently used as drug delivery vehicles. To investigate the effect of solvent on drug adsorption in MOFs, we have performed integrated computational and experimental studies in selected biocompatible MOFs, specifically, UiO-AZB, HKUST-1 (or CuBTC) and NH2-MIL-53(Al). The adsorption of three drugs, namely, 5-fluorouracil (5-FU), ibuprofen (IBU), and hydroxyurea (HU) were performed in the presence and absence of the ethanol. Our computational predictions, at 1 atmospheric pressure, showed a reasonable agreement with experimental studies performed in the presence of ethanol. We find that in the presence of ethanol the drug molecules were adsorbed at the interface of solvent and MOFs. Moreover, the computationally calculated adsorption isotherms suggested that the drug adsorption was driven by electrostatic interactions at lower pressures (<10-4 Pa). Our computational predictions in the absence of ethanol were higher compared to those in the presence of ethanol. The MOF-adsorbate interaction (U HA) energy decreased with decrease in the size of a drug molecule in all three MOFs at all simulated pressures. At high pressure the interaction energy increases with increase in the MOFs pore size as the number of molecules adsorbed increases. Thus, our research shows the important role played by solvent in drug adsorption and suggests that it is critical to consider solvent while performing computational studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...