Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38712292

ABSTRACT

Tumor-associated neutrophils (TANs) have been shown to promote immunosuppression and tumor progression, and a high TAN frequency predicts poor prognosis in triple-negative breast cancer (TNBC). Dysregulation of CREB binding protein (CBP)/P300 function has been observed with multiple cancer types. The bromodomain (BRD) of CBP/P300 has been shown to regulate its activity. In this study, we found that IACS-70654, a novel and selective CBP/P300 BRD inhibitor, reduced TANs and inhibited the growth of neutrophil-enriched TNBC models. In the bone marrow, CBP/P300 BRD inhibition reduced the tumor-driven abnormal differentiation and proliferation of neutrophil progenitors. Inhibition of CBP/P300 BRD also stimulated the immune response by inducing an IFN response and MHCI expression in tumor cells and increasing tumor-infiltrated CTLs. Moreover, IACS-70654 improved the response of a neutrophil-enriched TNBC model to docetaxel and immune checkpoint blockade. This provides a rationale for combining a CBP/P300 BRD inhibitor with standard-of-care therapies in future clinical trials for neutrophil-enriched TNBC.

2.
J Med Chem ; 66(14): 9954-9971, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37436942

ABSTRACT

Chemotherapy-induced peripheral neuropathy (CIPN) is a major unmet medical need with limited treatment options. Despite different mechanisms of action, diverse chemotherapeutics can cause CIPN through a converged pathway─an active axon degeneration program that engages the dual leucine zipper kinase (DLK). DLK is a neuronally enriched kinase upstream in the MAPK-JNK cascade, and while it is dormant under physiological conditions, DLK mediates a core mechanism for neuronal injury response under stress conditions, making it an attractive target for treatment of neuronal injury and neurodegenerative diseases. We have developed potent, selective, brain penetrant DLK inhibitors with excellent PK and activity in mouse models of CIPN. Lead compound IACS-52825 (22) showed strongly effective reversal of mechanical allodynia in a mouse model of CIPN and was advanced into preclinical development.


Subject(s)
Antineoplastic Agents , Peripheral Nervous System Diseases , Mice , Animals , Neurons , MAP Kinase Signaling System , Brain/metabolism , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/drug therapy , Antineoplastic Agents/adverse effects , MAP Kinase Kinase Kinases
3.
Blood Cancer J ; 13(1): 53, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37055414

ABSTRACT

Monotherapy with Menin inhibitor (MI), e.g., SNDX-5613, induces clinical remissions in patients with relapsed/refractory AML harboring MLL1-r or mtNPM1, but most patients either fail to respond or eventually relapse. Utilizing single-cell RNA-Seq, ChiP-Seq, ATAC-Seq, RNA-Seq, RPPA, and mass cytometry (CyTOF) analyses, present pre-clinical studies elucidate gene-expression correlates of MI efficacy in AML cells harboring MLL1-r or mtNPM1. Notably, MI-mediated genome-wide, concordant, log2 fold-perturbations in ATAC-Seq and RNA-Seq peaks were observed at the loci of MLL-FP target genes, with upregulation of mRNAs associated with AML differentiation. MI treatment also reduced the number of AML cells expressing the stem/progenitor cell signature. A protein domain-focused CRISPR-Cas9 screen in MLL1-r AML cells identified targetable co-dependencies with MI treatment, including BRD4, EP300, MOZ and KDM1A. Consistent with this, in vitro co-treatment with MI and BET, MOZ, LSD1 or CBP/p300 inhibitor induced synergistic loss of viability of AML cells with MLL1-r or mtNPM1. Co-treatment with MI and BET or CBP/p300 inhibitor also exerted significantly superior in vivo efficacy in xenograft models of AML with MLL1-r. These findings highlight novel, MI-based combinations that could prevent escape of AML stem/progenitor cells following MI monotherapy, which is responsible for therapy-refractory AML relapse.


Subject(s)
Leukemia, Myeloid, Acute , Myeloid-Lymphoid Leukemia Protein , Humans , Cell Cycle Proteins/genetics , Epigenesis, Genetic , Histone Demethylases/genetics , Histone-Lysine N-Methyltransferase/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Neoplasm Recurrence, Local/genetics , Nuclear Proteins/genetics , Proto-Oncogene Proteins/metabolism , Transcription Factors/genetics
4.
J Med Chem ; 64(15): 11302-11329, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34292726

ABSTRACT

Indoleamine 2,3-dioxygenase 1 (IDO1), a heme-containing enzyme that mediates the rate-limiting step in the metabolism of l-tryptophan to kynurenine, has been widely explored as a potential immunotherapeutic target in oncology. We developed a class of inhibitors with a conformationally constrained bicyclo[3.1.0]hexane core. These potently inhibited IDO1 in a cellular context by binding to the apoenzyme, as elucidated by biochemical characterization and X-ray crystallography. A SKOV3 tumor model was instrumental in differentiating compounds, leading to the identification of IACS-9779 (62) and IACS-70465 (71). IACS-70465 has excellent cellular potency, a robust pharmacodynamic response, and in a human whole blood assay was more potent than linrodostat (BMS-986205). IACS-9779 with a predicted human efficacious once daily dose below 1 mg/kg to sustain >90% inhibition of IDO1 displayed an acceptable safety margin in rodent toxicology and dog cardiovascular studies to support advancement into preclinical safety evaluation for human development.


Subject(s)
Drug Discovery , Enzyme Inhibitors/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Molecular Structure , Structure-Activity Relationship
5.
Pain ; 162(10): 2599-2612, 2021 10 01.
Article in English | MEDLINE | ID: mdl-33872235

ABSTRACT

ABSTRACT: Chemotherapy-induced peripheral neuropathy (CIPN) and chemotherapy-induced cognitive impairments (CICI) are common, often severe neurotoxic side effects of cancer treatment that greatly reduce quality of life of cancer patients and survivors. Currently, there are no Food and Drug Administration-approved agents for the prevention or curative treatment of CIPN or CICI. The dual leucine zipper kinase (DLK) is a key mediator of axonal degeneration that is localized to axons and coordinates the neuronal response to injury. We developed a novel brain-penetrant DLK inhibitor, IACS'8287, which demonstrates potent and highly selective inhibition of DLK in vitro and in vivo. Coadministration of IACS'8287 with the platinum derivative cisplatin prevents mechanical allodynia, loss of intraepidermal nerve fibers in the hind paws, cognitive deficits, and impairments in brain connectivity in mice, all without interfering with the antitumor activity of cisplatin. The protective effects of IACS'8287 are associated with preservation of mitochondrial function in dorsal root ganglion neurons and in brain synaptosomes. In addition, RNA sequencing analysis of dorsal root ganglia reveals modulation of genes involved in neuronal activity and markers for immune cell infiltration by DLK inhibition. These data indicate that CIPN and CICI require DLK signaling in mice, and DLK inhibitors could become an attractive treatment in the clinic when coadministered with cisplatin, and potentially other chemotherapeutic agents, to prevent neurotoxicities as a result of cancer treatment.


Subject(s)
Antineoplastic Agents , Cognitive Dysfunction , Peripheral Nervous System Diseases , Animals , Antineoplastic Agents/toxicity , Disease Models, Animal , Humans , Leucine Zippers , Mice , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/prevention & control , Quality of Life
6.
J Med Chem ; 63(21): 12957-12977, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33118821

ABSTRACT

Inhibition of glutaminase-1 (GLS-1) hampers the proliferation of tumor cells reliant on glutamine. Known glutaminase inhibitors have potential limitations, and in vivo exposures are potentially limited due to poor physicochemical properties. We initiated a GLS-1 inhibitor discovery program focused on optimizing physicochemical and pharmacokinetic properties, and have developed a new selective inhibitor, compound 27 (IPN60090), which is currently in phase 1 clinical trials. Compound 27 attains high oral exposures in preclinical species, with strong in vivo target engagement, and should robustly inhibit glutaminase in humans.


Subject(s)
Enzyme Inhibitors/chemistry , Glutaminase/antagonists & inhibitors , Triazoles/pharmacokinetics , Administration, Oral , Animals , Cell Line, Tumor , Dogs , Drug Evaluation, Preclinical , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Glutaminase/genetics , Glutaminase/metabolism , Half-Life , Hepatocytes/cytology , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Inhibitory Concentration 50 , Male , Mice , Microsomes/metabolism , Protein Binding , Rats , Rats, Sprague-Dawley , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Structure-Activity Relationship , Triazoles/chemistry , Triazoles/metabolism
7.
Int J Mol Sci ; 21(14)2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32659913

ABSTRACT

Dual leucine zipper kinase (DLK, Map3k12) is an axonal protein that governs the balance between degeneration and regeneration through its downstream effectors c-jun N-terminal kinase (JNK) and phosphorylated c-jun (p-c-Jun). In peripheral nerves DLK is generally inactive until induced by injury, after which it transmits signals to the nucleus via retrograde transport. Here we report that in contrast to this mode of regulation, in the uninjured adult mouse cerebellum, DLK constitutively drives nuclear p-c-Jun in cerebellar granule neurons, whereas in the forebrain, DLK is similarly expressed and active, but nuclear p-c-Jun is undetectable. When neurodegeneration results from mutant human tau in the rTg4510 mouse model, p-c-Jun then accumulates in neuronal nuclei in a DLK-dependent manner, and the extent of p-c-Jun correlates with markers of synaptic loss and gliosis. This regional difference in DLK-dependent nuclear p-c-Jun accumulation could relate to differing levels of JNK scaffolding proteins, as the cerebellum preferentially expresses JNK-interacting protein-1 (JIP-1), whereas the forebrain contains more JIP-3 and plenty of SH3 (POSH). To characterize the functional differences between constitutive- versus injury-induced DLK signaling, RNA sequencing was performed after DLK inhibition in the cerebellum and in the non-transgenic and rTg4510 forebrain. In all contexts, DLK inhibition reduced a core set of transcripts that are associated with the JNK pathway. Non-transgenic forebrain showed almost no other transcriptional changes in response to DLK inhibition, whereas the rTg4510 forebrain and the cerebellum exhibited distinct differentially expressed gene signatures. In the cerebellum, but not the rTg4510 forebrain, pathway analysis indicated that DLK regulates insulin growth factor-1 (IGF1) signaling through the transcriptional induction of IGF1 binding protein-5 (IGFBP5), which was confirmed and found to be functionally relevant by measuring signaling through the IGF1 receptor. Together these data illuminate the complex multi-functional nature of DLK signaling in the central nervous system (CNS) and demonstrate its role in homeostasis as well as tau-mediated neurodegeneration.


Subject(s)
Brain/metabolism , Brain/physiology , Homeostasis/physiology , MAP Kinase Kinase Kinases/metabolism , Stress, Physiological/physiology , Animals , Axons/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/physiology , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Neurons/physiology , Signal Transduction/physiology , Transcriptome/physiology
8.
J Med Chem ; 58(1): 512-6, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-24712864

ABSTRACT

Structure-based drug design was used to guide the optimization of a series of selective BTK inhibitors as potential treatments for Rheumatoid arthritis. Highlights include the introduction of a benzyl alcohol group and a fluorine substitution, each of which resulted in over 10-fold increase in activity. Concurrent optimization of drug-like properties led to compound 1 (RN486) ( J. Pharmacol. Exp. Ther. 2012 , 341 , 90 ), which was selected for advanced preclinical characterization based on its favorable properties.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Isoquinolines/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase , Crystallography, X-Ray , Drug Design , Humans , Isoquinolines/chemistry , Isoquinolines/metabolism , Models, Chemical , Models, Molecular , Molecular Structure , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/metabolism
9.
Bioorg Med Chem Lett ; 24(21): 4969-75, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25262541

ABSTRACT

The discovery of a novel series of pyrrolopyrazines as JAK inhibitors with comparable enzyme and cellular activity to tofacitinib is described. The series was identified using a scaffold hopping approach aided by structure based drug design using principles of intramolecular hydrogen bonding for conformational restriction and targeting specific pockets for modulating kinase activity.


Subject(s)
Janus Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrazines/chemistry , Pyrroles/chemistry , Drug Design , Humans , Janus Kinase 3/metabolism , Models, Molecular , Molecular Conformation , Molecular Structure , Phosphorylation , Piperidines/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Structure-Activity Relationship
10.
J Med Chem ; 57(6): 2683-91, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24520947

ABSTRACT

Inhibition of spleen tyrosine kinase has attracted much attention as a mechanism for the treatment of cancers and autoimmune diseases such as asthma, rheumatoid arthritis, and systemic lupus erythematous. We report the structure-guided optimization of pyridazine amide spleen tyrosine kinase inhibitors. Early representatives of this scaffold were highly potent and selective but mutagenic in an Ames assay. An approach that led to the successful identification of nonmutagenic examples, as well as further optimization to compounds with reduced cardiovascular liabilities is described. Select pharmacokinetic and in vivo efficacy data are presented.


Subject(s)
Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyridazines/chemical synthesis , Pyridazines/pharmacology , Spleen/enzymology , Amides/chemical synthesis , Amides/pharmacology , Animals , Computational Biology , Computer Simulation , Drug Design , Ether-A-Go-Go Potassium Channels/drug effects , Humans , In Vitro Techniques , Mice , Microsomes, Liver/metabolism , Models, Molecular , Molecular Conformation , Mutagenesis/drug effects , Mutagenicity Tests , Protein Kinase Inhibitors/pharmacokinetics , Pyridazines/pharmacokinetics , Rats , Spleen/drug effects , Structure-Activity Relationship , X-Ray Diffraction
11.
Bioorg Med Chem Lett ; 23(9): 2522-6, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23541670

ABSTRACT

We report the discovery of a novel series of ATP-competitive Janus kinase 3 (JAK3) inhibitors based on the 5H-pyrrolo[2,3-b]pyrazine scaffold. The initial leads in this series, compounds 1a and 1h, showed promising potencies, but a lack of selectivity against other isoforms in the JAK family. Computational and crystallographic analysis suggested that the phenyl ether moiety possessed a favorable vector to achieve selectivity. Exploration of this vector resulted in the identification of 12b and 12d, as potent JAK3 inhibitors, demonstrating improved JAK family and kinase selectivity.


Subject(s)
Janus Kinase 3/antagonists & inhibitors , Phenyl Ethers/chemistry , Protein Kinase Inhibitors/chemistry , Pyridazines/chemistry , Pyrroles/chemistry , Binding Sites , Catalytic Domain , Drug Evaluation, Preclinical , Janus Kinase 3/metabolism , Molecular Docking Simulation , Phenyl Ethers/chemical synthesis , Phenyl Ethers/metabolism , Protein Binding , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Structure-Activity Relationship
12.
Bioorg Med Chem Lett ; 23(9): 2793-800, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23540648

ABSTRACT

Using a structure based design approach we have identified a series of indazole substituted pyrrolopyrazines, which are potent inhibitors of JAK3. Intramolecular electronic repulsion was used as a strategy to induce a strong conformational bias within the ligand. Compounds bearing this conformation participated in a favorable hydrophobic interaction with a cysteine residue in the JAK3 binding pocket, which imparted high selectivity versus the kinome and improved selectivity within the JAK family.


Subject(s)
Drug Design , Janus Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Binding Sites , Crystallography, X-Ray , Hydrophobic and Hydrophilic Interactions , Indazoles/chemistry , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/metabolism , Janus Kinase 3/metabolism , Molecular Docking Simulation , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Protein Structure, Tertiary , Pyrazines/chemical synthesis , Pyrazines/chemistry , Pyrazines/metabolism , Structure-Activity Relationship
13.
J Med Chem ; 56(1): 345-56, 2013 Jan 10.
Article in English | MEDLINE | ID: mdl-23214979

ABSTRACT

The Janus kinases (JAKs) are involved in multiple signaling networks relevant to inflammatory diseases, and inhibition of one or more members of this class may modulate disease activity or progression. We optimized a new inhibitor scaffold, 3-amido-5-cyclopropylpyrrolopyrazines, to a potent example with reasonable kinome selectivity, including selectivity for JAK3 versus JAK1, and good biopharmaceutical properties. Evaluation of this analogue in cellular and in vivo models confirmed functional selectivity for modulation of a JAK3/JAK1-dependent IL-2 stimulated pathway over a JAK1/JAK2/Tyk2-dependent IL-6 stimulated pathway.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Cyclopropanes/chemical synthesis , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 3/antagonists & inhibitors , Pyrazines/chemical synthesis , Pyrroles/chemical synthesis , Administration, Oral , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Caco-2 Cells , Crystallography, X-Ray , Cyclopropanes/pharmacokinetics , Cyclopropanes/pharmacology , Gene Knockdown Techniques , High-Throughput Screening Assays , Humans , Interleukin-2/physiology , Janus Kinase 1/genetics , Janus Kinase 1/metabolism , Janus Kinase 3/genetics , Janus Kinase 3/metabolism , Mice , Models, Molecular , Pyrazines/pharmacokinetics , Pyrazines/pharmacology , Pyrroles/pharmacokinetics , Pyrroles/pharmacology , RNA, Small Interfering/genetics , Rats , Receptors, Interleukin-6/physiology , Signal Transduction/drug effects , Structure-Activity Relationship , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
15.
J Med Chem ; 54(7): 2255-65, 2011 Apr 14.
Article in English | MEDLINE | ID: mdl-21375264

ABSTRACT

The development of a new series of p38α inhibitors resulted in the identification of two clinical candidates, one of which was advanced into a phase 2 clinical study for rheumatoid arthritis. The original lead, an lck inhibitor that also potently inhibited p38α, was a screening hit from our kinase inhibitor library. This manuscript describes the optimization of the lead to p38-selective examples with good pharmacokinetic properties.


Subject(s)
Drug Discovery/methods , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Pyridones/pharmacology , Pyridones/pharmacokinetics , Pyrimidines/pharmacology , Pyrimidines/pharmacokinetics , Administration, Oral , Arthritis, Rheumatoid/drug therapy , Biological Availability , Cell Line , Clinical Trials as Topic , Humans , Mitogen-Activated Protein Kinase 14/chemistry , Models, Molecular , Protein Conformation , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Pyridones/administration & dosage , Pyridones/chemistry , Pyrimidines/administration & dosage , Pyrimidines/chemistry , Structure-Activity Relationship , Substrate Specificity
17.
Org Lett ; 4(10): 1787-90, 2002 May 16.
Article in English | MEDLINE | ID: mdl-12000299

ABSTRACT

[reaction: see text] The convergent synthesis of the fully functionalized C(1)-C(18) segment 24 of the furanocembranes lophotoxin and pukalide was accomplished in 11 steps and 10% overall yield. The key step was a stereoselective conversion of alkynoate 21 to trimethylsilyl 2-alkenylfuran 22.


Subject(s)
Cnidarian Venoms/chemical synthesis , Epoxy Compounds/chemical synthesis , Furans/chemical synthesis , Nicotinic Antagonists/chemical synthesis , Terpenes/chemical synthesis , Cnidarian Venoms/chemistry , Cyclization , Epoxy Compounds/chemistry , Furans/chemistry , Magnetic Resonance Spectroscopy , Molecular Conformation , Nicotinic Antagonists/chemistry , Receptors, Nicotinic/drug effects , Stereoisomerism , Terpenes/chemistry
18.
J Org Chem ; 64(1): 276-281, 1999 Jan 08.
Article in English | MEDLINE | ID: mdl-11674113
SELECTION OF CITATIONS
SEARCH DETAIL
...