Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Gastrointest Liver Physiol ; 307(11): G1057-72, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25301187

ABSTRACT

The effector cells and second messengers participating in nitrergic neuromuscular transmission (NMT) were investigated in the mouse internal anal sphincter (IAS). Protein expression of guanylate cyclase (GCα, GCß) and cyclic GMP-dependent protein kinase I (cGKI) were examined in cryostat sections with dual-labeling immunohistochemical techniques in PDGFRα(+) cells, interstitial cells of Cajal (ICC), and smooth muscle cells (SMC). Gene expression levels were determined with quantitative PCR of dispersed cells from Pdgfrα(egfp/+), Kit(copGFP/+), and smMHC(Cre-egfp) mice sorted with FACS. The relative gene and protein expression levels of GCα and GCß were PDGFRα(+) cells > ICC ≫ SMC. In contrast, cGKI gene expression sequence was SMC = ICC > PDGFRα(+) cells whereas cGKI protein expression sequence was neurons > SMC ≫ ICC = PDGFRα(+) cells. The functional role of cGKI was investigated in cGKI(-/-) mice. Relaxation with 8-bromo (8-Br)-cGMP was greatly reduced in cGKI(-/-) mice whereas responses to sodium nitroprusside (SNP) were partially reduced and forskolin responses were unchanged. A nitrergic relaxation occurred with nerve stimulation (NS, 5 Hz, 60 s) in cGKI(+/+) and cGKI(-/-) mice although there was a small reduction in the cGKI(-/-) mouse. N(ω)-nitro-l-arginine (l-NNA) abolished responses during the first 20-30 s of NS in both animals. The GC inhibitor ODQ greatly reduced or abolished SNP and nitrergic NS responses in both animals. These data confirm an essential role for GC in NO-induced relaxation in the IAS. However, the expression of GC and cGKI by all three cell types suggests that each may participate in coordinating muscular responses to NO. The persistence of nitrergic NMT in the cGKI(-/-) mouse suggests the presence of a significant GC-dependent, cGKI-independent pathway.


Subject(s)
Anal Canal/physiology , Neuromuscular Junction/physiology , Nitric Oxide/physiology , Synaptic Transmission/physiology , Anal Canal/innervation , Animals , Aorta, Thoracic/metabolism , Cyclic GMP-Dependent Protein Kinase Type I/genetics , Cyclic GMP-Dependent Protein Kinase Type I/physiology , Guanylate Cyclase/metabolism , In Vitro Techniques , Mice , Mice, Knockout , Muscle Contraction/drug effects , Second Messenger Systems/drug effects , Second Messenger Systems/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...