Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Phys Fluids (1994) ; 33(6): 066605, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34149276

ABSTRACT

We present high-fidelity numerical simulations of expiratory biosol transport during normal breathing under indoor, stagnant air conditions with and without a facile mask. We investigate mask efficacy to suppress the spread of saliva particles that is underpinnings existing social distancing recommendations. The present simulations incorporate the effect of human anatomy and consider a spectrum of saliva particulate sizes that range from 0.1 to 10 µm while also accounting for their evaporation. The simulations elucidate the vorticity dynamics of human breathing and show that without a facile mask, saliva particulates could travel over 2.2 m away from the person. However, a non-medical grade face mask can drastically reduce saliva particulate propagation to 0.72 m away from the person. This study provides new quantitative evidence that facile masks can successfully suppress the spreading of saliva particulates due to normal breathing in indoor environments.

2.
ArXiv ; 2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33173803

ABSTRACT

The Coronavirus disease outbreak of 2019 has been causing significant loss of life and unprecedented economical loss throughout the world. Social distancing and face masks are widely recommended around the globe in order to protect others and prevent the spread of the virus through breathing, coughing, and sneezing. To expand the scientific underpinnings of such recommendations, we carry out high-fidelity computational fluid dynamics simulations of unprecedented resolution and realism to elucidate the underlying physics of saliva particulate transport during human cough with and without facial masks. Our simulations: (a) are carried out under both a stagnant ambient flow (indoor) and a mild unidirectional breeze (outdoor); (b) incorporate the effect of human anatomy on the flow; (c) account for both medical and non-medical grade masks; and (d) consider a wide spectrum of particulate sizes, ranging from 10 micro m to 300 micro m. We show that during indoor coughing some saliva particulates could travel up to 0.48 m, 0.73 m, and 2.62 m for the cases with medical-grade, non-medical grade, and without facial masks, respectively. Thus, in indoor environments either medical or non-medical grade facial masks can successfully limit the spreading of saliva particulates to others. Under outdoor conditions with a unidirectional mild breeze, however, leakage flow through the mask can cause saliva particulates to be entrained into the energetic shear layers around the body and transported very fast at large distances by the turbulent flow, thus, limiting the effectiveness of facial masks.

3.
J Biomech Eng ; 140(4)2018 04 01.
Article in English | MEDLINE | ID: mdl-29305610

ABSTRACT

The blood flow patterns in the region around the aortic valve depend on the geometry of the aorta and on the complex flow-structure interaction between the pulsatile flow and the valve leaflets. Consequently, the flow depends strongly on the constitutive properties of the tissue, which can be expected to vary between healthy and diseased heart valves or native and prosthetic valves. The main goal of this work is to qualitatively demonstrate that the choice of the constitutive model of the aortic valve is critical in analysis of heart hemodynamics. To accomplish that two different constitutive models were used in curvilinear immersed boundary-finite element-fluid-structure interaction (CURVIB-FE-FSI) method developed by Gilmanov et al. (2015, "A Numerical Approach for Simulating Fluid Structure Interaction of Flexible Thin Shells Undergoing Arbitrarily Large Deformations in Complex Domains," J. Comput. Phys., 300, pp. 814-843.) to simulate an aortic valve in an anatomic aorta at physiologic conditions. The two constitutive models are: (1) the Saint-Venant (StV) model and (2) the modified May-Newman&Yin (MNY) model. The MNY model is more general and includes nonlinear, anisotropic effects. It is appropriate to model the behavior of both prosthetic and biological tissue including native valves. Both models are employed to carry out FSI simulations of the same valve in the same aorta anatomy. The computed results reveal dramatic differences in both the vorticity dynamics in the aortic sinus and the wall shear-stress patterns on the aortic valve leaflets and underscore the importance of tissue constitutive models for clinically relevant simulations of aortic valves.


Subject(s)
Aortic Valve/cytology , Aortic Valve/physiology , Hemodynamics , Models, Cardiovascular , Algorithms , Anisotropy , Biomechanical Phenomena , Finite Element Analysis , Pulsatile Flow
4.
J Biomech ; 50: 56-62, 2017 01 04.
Article in English | MEDLINE | ID: mdl-27876370

ABSTRACT

Hyperelastic material models have been incorporated in the rotation-free, large deformation, shell finite element (FE) formulation of (Stolarski et al., 2013) and applied to dynamic simulations of aortic heart valve. Two models used in the past in analysis of such problem i.e. the Saint-Venant and May-Newmann-Yin (MNY) material models have been considered and compared. Uniaxial tests for those constitutive equations were performed to verify the formulation and implementation of the models. The issue of leaflets interactions during the closing of the heart valve at the end of systole is considered. The critical role of using non-linear anisotropic model for proper dynamic response of the heart valve especially during the closing phase is demonstrated quantitatively. This work contributes an efficient FE framework for simulating biological tissues and paves the way for high-fidelity flow structure interaction simulations of native and bioprosthetic aortic heart valves.


Subject(s)
Heart Valve Prosthesis , Heart Valves/physiology , Models, Cardiovascular , Anisotropy , Computer Simulation , Finite Element Analysis , Humans , Rotation
6.
J Biomech Eng ; 136(12): 121009, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25321615

ABSTRACT

The ability to replicate physiological hemodynamic conditions during in vitro tissue development has been recognized as an important aspect in the development and in vitro assessment of engineered heart valve tissues. Moreover, we have demonstrated that studies aiming to understand mechanical conditioning require separation of the major heart valve deformation loading modes: flow, stretch, and flexure (FSF) (Sacks et al., 2009, "Bioengineering Challenges for Heart Valve Tissue Engineering," Annu. Rev. Biomed. Eng., 11(1), pp. 289-313). To achieve these goals in a novel bioreactor design, we utilized a cylindrical conduit configuration for the conditioning chamber to allow for higher fluid velocities, translating to higher shear stresses on the in situ tissue specimens while retaining laminar flow conditions. Moving boundary computational fluid dynamic (CFD) simulations were performed to predict the flow field under combined cyclic flexure and steady flow (cyclic-flex-flow) states using various combinations of flow rate, and media viscosity. The device was successfully constructed and tested for incubator housing, gas exchange, and sterility. In addition, we performed a pilot experiment using biodegradable polymer scaffolds seeded with bone marrow derived stem cells (BMSCs) at a seeding density of 5 × 10(6) cells/cm(2). The constructs were subjected to combined cyclic flexure (1 Hz frequency) and steady flow (Re = 1376; flow rate of 1.06 l/min (LPM); shear stress in the range of 0-9 dynes/cm(2) for 2 weeks to permit physiological shear stress conditions. Assays revealed significantly (P < 0.05) higher amounts of collagen (2051 ± 256 µg/g) at the end of 2 weeks in comparison to similar experiments previously conducted in our laboratory but performed at subphysiological levels of shear stress (<2 dynes/cm(2); Engelmayr et al., 2006, "Cyclic Flexure and Laminar Flow Synergistically Accelerate Mesenchymal Stem Cell-Mediated Engineered Tissue Formation: Implications for Engineered Heart Valve Tissues," Biomaterials, 27(36), pp. 6083-6095). The implications of this novel design are that fully coupled or decoupled physiological flow, flexure, and stretch modes of engineered tissue conditioning investigations can be readily accomplished with the inclusion of this device in experimental protocols on engineered heart valve tissue formation.


Subject(s)
Biomimetics/instrumentation , Bioreactors , Heart Valves/cytology , Hydrodynamics , Mechanical Phenomena , Pulmonary Artery/physiology , Tissue Engineering , Animals , Biomechanical Phenomena , Bone Marrow Cells/cytology , Gases/chemistry , Models, Biological , Shear Strength , Sheep , Stem Cells/cytology , Sterilization , Stress, Mechanical
7.
Nat Commun ; 5: 4216, 2014 Jun 24.
Article in English | MEDLINE | ID: mdl-24960397

ABSTRACT

To improve power production and structural reliability of wind turbines, there is a pressing need to understand how turbines interact with the atmospheric boundary layer. However, experimental techniques capable of quantifying or even qualitatively visualizing the large-scale turbulent flow structures around full-scale turbines do not exist today. Here we use snowflakes from a winter snowstorm as flow tracers to obtain velocity fields downwind of a 2.5-MW wind turbine in a sampling area of ~36 × 36 m(2). The spatial and temporal resolutions of the measurements are sufficiently high to quantify the evolution of blade-generated coherent motions, such as the tip and trailing sheet vortices, identify their instability mechanisms and correlate them with turbine operation, control and performance. Our experiment provides an unprecedented in situ characterization of flow structures around utility-scale turbines, and yields significant insights into the Reynolds number similarity issues presented in wind energy applications.

8.
Comput Fluids ; 77: 76-96, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23833331

ABSTRACT

We develop an overset-curvilinear immersed boundary (overset-CURVIB) method in a general non-inertial frame of reference to simulate a wide range of challenging biological flow problems. The method incorporates overset-curvilinear grids to efficiently handle multi-connected geometries and increase the resolution locally near immersed boundaries. Complex bodies undergoing arbitrarily large deformations may be embedded within the overset-curvilinear background grid and treated as sharp interfaces using the curvilinear immersed boundary (CURVIB) method (Ge and Sotiropoulos, Journal of Computational Physics, 2007). The incompressible flow equations are formulated in a general non-inertial frame of reference to enhance the overall versatility and efficiency of the numerical approach. Efficient search algorithms to identify areas requiring blanking, donor cells, and interpolation coefficients for constructing the boundary conditions at grid interfaces of the overset grid are developed and implemented using efficient parallel computing communication strategies to transfer information among sub-domains. The governing equations are discretized using a second-order accurate finite-volume approach and integrated in time via an efficient fractional-step method. Various strategies for ensuring globally conservative interpolation at grid interfaces suitable for incompressible flow fractional step methods are implemented and evaluated. The method is verified and validated against experimental data, and its capabilities are demonstrated by simulating the flow past multiple aquatic swimmers and the systolic flow in an anatomic left ventricle with a mechanical heart valve implanted in the aortic position.

9.
J Comput Phys ; 244: 41-62, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23729841

ABSTRACT

We develop a novel large-scale kinematic model for animating the left ventricle (LV) wall and use this model to drive the fluid-structure interaction (FSI) between the ensuing blood flow and a mechanical heart valve prosthesis implanted in the aortic position of an anatomic LV/aorta configuration. The kinematic model is of lumped type and employs a cell-based, FitzHugh-Nagumo framework to simulate the motion of the LV wall in response to an excitation wavefront propagating along the heart wall. The emerging large-scale LV wall motion exhibits complex contractile mechanisms that include contraction (twist) and expansion (untwist). The kinematic model is shown to yield global LV motion parameters that are well within the physiologic range throughout the cardiac cycle. The FSI between the leaflets of the mechanical heart valve and the blood flow driven by the dynamic LV wall motion and mitral inflow is simulated using the curvilinear immersed boundary (CURVIB) method [1, 2] implemented in conjunction with a domain decomposition approach. The computed results show that the simulated flow patterns are in good qualitative agreement with in vivo observations. The simulations also reveal complex kinematics of the valve leaflets, thus, underscoring the need for patient-specific simulations of heart valve prosthesis and other cardiac devices.

10.
Ann Biomed Eng ; 41(10): 2157-70, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23604953

ABSTRACT

We carry out high-resolution laboratory experiments and numerical simulations to investigate the dynamics of unsteady vortex formation across the neck of an anatomic in vitro model of an intracranial aneurysm. A transparent acrylic replica of the aneurysm is manufactured and attached to a pulse duplicator system in the laboratory. Time-resolved three-dimensional three-component velocity measurements are obtained inside the aneurysm sac under physiologic pulsatile conditions. High-resolution numerical simulations are also carried out under conditions replicating as closely as possible those of the laboratory experiment. Comparison of the measured and computed flow fields shows very good agreement in terms of instantaneous velocity fields and three-dimensional coherent structures. Both experiments and numerical simulations show that a well-defined vortical structure is formed near the proximal neck at early systole. This vortical structure is advected by the flow across the aneurysm neck and impinges on the distal wall. The results underscore the complexity of aneurysm hemodynamics and point to the need for integrating high-resolution, time-resolved three-dimensional experimental and computational techniques. The current work emphasizes the importance of vortex formation phenomena at aneurysmal necks and reinforces the findings of previous computational work and recent clinical studies pointing to links between flow pulsatility and aneurysm growth and rupture.


Subject(s)
Computer Simulation , Intracranial Aneurysm , Models, Cardiovascular , Humans , Intracranial Aneurysm/pathology , Intracranial Aneurysm/physiopathology
11.
J Biomech ; 46(2): 373-82, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23200904

ABSTRACT

Computational fluid dynamics (CFD) tools have been extensively applied to study the hemodynamics in the total cavopulmonary connection (TCPC) in patients with only a single functioning ventricle. Without the contraction of a sub-pulmonary ventricle, pulsatility of flow through this connection is low and variable across patients, which is usually neglected in most numerical modeling studies. Recent studies suggest that such pulsatility can be non-negligible and can be important in hemodynamic predictions. The goal of this work is to compare the results of an in-house numerical methodology for simulating pulsatile TCPC flow with experimental results. Digital particle image velocimetry (DPIV) was acquired on TCPC in vitro models to evaluate the capability of the CFD tool in predicting pulsatile TCPC flow fields. In vitro hemodynamic measurements were used to compare the numerical prediction of power loss across the connection. The results demonstrated the complexity of the pulsatile TCPC flow fields and the validity of the numerical approach in simulating pulsatile TCPC flow dynamics in both idealized and complex patient specific models.


Subject(s)
Computer Simulation , Heart Ventricles/physiopathology , Models, Cardiovascular , Pulsatile Flow , Heart Ventricles/pathology , Humans
12.
J Biomech ; 46(2): 217-28, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23174421

ABSTRACT

Recent computational methods enabling patient-specific simulations of native and prosthetic heart valves are reviewed. Emphasis is placed on two critical components of such methods: (1) anatomically realistic finite element models for simulating the structural dynamics of heart valves; and (2) fluid structure interaction methods for simulating the performance of heart valves in a patient-specific beating left ventricle. It is shown that the significant progress achieved in both fronts paves the way toward clinically relevant computational models that can simulate the performance of a range of heart valves, native and prosthetic, in a patient-specific left heart environment. The significant algorithmic and model validation challenges that need to be tackled in the future to realize this goal are also discussed.


Subject(s)
Algorithms , Computer Simulation , Heart Valves/physiopathology , Heart Ventricles/physiopathology , Models, Cardiovascular , Female , Finite Element Analysis , Heart, Artificial , Humans , Male
15.
J Biomech ; 45(14): 2376-81, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22841650

ABSTRACT

Total cavopulmonary connection is the result of a series of palliative surgical repairs performed on patients with single ventricle heart defects. The resulting anatomy has complex and unsteady hemodynamics characterized by flow mixing and flow separation. Although varying degrees of flow pulsatility have been observed in vivo, non-pulsatile (time-averaged) boundary conditions have traditionally been assumed in hemodynamic modeling, and only recently have pulsatile conditions been incorporated without completely characterizing their effect or importance. In this study, 3D numerical simulations with both pulsatile and non-pulsatile boundary conditions were performed for 24 patients with different anatomies and flow boundary conditions from Georgia Tech database. Flow structures, energy dissipation rates and pressure drops were compared under rest and simulated exercise conditions. It was found that flow pulsatility is the primary factor in determining the appropriate choice of boundary conditions, whereas the anatomic configuration and cardiac output had secondary effects. Results show that the hemodynamics can be strongly influenced by the presence of pulsatile flow. However, there was a minimum pulsatility threshold, identified by defining a weighted pulsatility index (wPI), above which the influence was significant. It was shown that when wPI<30%, the relative error in hemodynamic predictions using time-averaged boundary conditions was less than 10% compared to pulsatile simulations. In addition, when wPI<50, the relative error was less than 20%. A correlation was introduced to relate wPI to the relative error in predicting the flow metrics with non-pulsatile flow conditions.


Subject(s)
Computer Simulation , Heart Defects, Congenital/physiopathology , Lung/blood supply , Models, Cardiovascular , Pulsatile Flow , Adolescent , Cardiac Output , Child , Child, Preschool , Female , Heart Defects, Congenital/pathology , Humans , Male
16.
Eur J Mech B Fluids ; 35: 20-24, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22773898

ABSTRACT

We study the formation of the mitral vortex ring during early diastolic filling in a patient-specific left ventricle using direct numerical simulation. The geometry of the left ventricle is reconstructed from Magnetic Resonance Imaging (MRI). The heart wall motion is modeled by a cell-based activation methodology, which yields physiologic kinematics with heart rate equal to 52 beats per minute. We show that the structure of the mitral vortex ring consists of the main vortex ring and trailing vortex tubes, which originate at the heart wall. The trailing vortex tubes play an important role in exciting twisting circumferential instability modes of the mitral vortex ring. At the end of diastole, the vortex ring impinges on the wall and the intraventricular flow transitions to a weak turbulent state. Our results can be used to help interprete and analyze three-dimensional in-vivo flow measurements obtained with MRI.

17.
J Exp Biol ; 215(Pt 4): 671-84, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22279075

ABSTRACT

In this work we study the hydrodynamics of a bluegill sunfish performing a C-start maneuver in unprecedented detail using 3-D numerical simulations guided by previous laboratory experiments with live fish. The 3-D fish body geometry and kinematics are reconstructed from the experiments using high-speed video and prescribed as input to the numerical simulation. The calculated instantaneous flow fields at various stages of the C-start maneuver are compared with the two-dimensional particle image velocimetry measurements, and are shown to capture essentially all flow features observed in the measurements with good quantitative accuracy; the simulations reveal the experimentally observed three primary jet flow patterns whose momentum time series are in very good agreement with the measured flow field. The simulations elucidate for the first time the complex 3-D structure of the wake during C-starts, revealing an intricate vortical structure consisting of multiple connected vortex loops at the end of the C-start. We also find that the force calculated based on the 3-D flow field has higher magnitudes than that implied by the jet momentum on the midplane, and it exhibits large and rapid fluctuations during the two stages of the C-start. These fluctuations are physical and are related to the change in the direction of the acceleration of the fish body, which changes the location of the high and low pressure pockets around the fish.


Subject(s)
Escape Reaction/physiology , Hydrodynamics , Perciformes/physiology , Swimming/physiology , Animals , Computer Simulation , Imaging, Three-Dimensional , Models, Theoretical , Rheology
18.
Ann Biomed Eng ; 40(7): 1468-85, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22215278

ABSTRACT

Previous experimental and numerical blood studies have shown that high shear stress levels, long exposure times to these shear stresses, and flow recirculation promote thromboembolism. Artificial heart valves, in particular bileaflet mechanical heart valves (BMHVs), are prone to developing thromboembolic complications. These complications often form at the hinge regions of BMHVs and the associated geometry has been shown to affect the local flow dynamics and the associated thrombus formation. However, to date no study has focused on simulating the motion of realistically modeled blood elements within the hinge region to numerically estimate the hinge-related blood damage. Consequently, this study aims at (a) simulating the motion of realistically modeled platelets during the leakage (mid-diastole) phase in different BMHV hinge designs placed in the aortic position and (b) quantitatively comparing the blood damage associated with different designs. Three designs are investigated to assess the effects of hinge geometry and dimensions: a 23 mm St. Jude Medical Regent™ valve hinge with two different gap distances between the leaflet ear and hinge recess; and a 23 mm CarboMedics (CM) aortic valve hinge. The recently developed lattice-Boltzmann method with external boundary force method is used to simulate the hinge flow and capture the dynamics and surface shear stresses of individual platelets. A blood damage index (BDI) value is then estimated based on a linear shear stress-exposure time BDI model. The velocity boundary conditions are obtained from previous 3D large-scale simulations of the hinge flow fields. The trajectories of the blood elements in the hinge region are found to be qualitatively similar for all three hinges, but the shear stresses experienced by individual platelets are higher for the CM hinge design, leading to a higher BDI. The results of this study are also shown to be in good agreement with previous studies, thus validating the numerical method for future research in BMHV flows. This study provides a general numerical tool to optimize the hinge design based on both hemodynamic and thromboembolic performance.


Subject(s)
Blood Platelets/metabolism , Heart, Artificial/adverse effects , Models, Cardiovascular , Stress, Physiological , Thromboembolism/etiology , Thromboembolism/metabolism , Blood Flow Velocity , Humans
19.
IEEE Trans Vis Comput Graph ; 18(10): 1614-26, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22144526

ABSTRACT

We present Interactive Slice World-in-Miniature (WIM), a framework for navigating and interrogating volumetric data sets using an interface enabled by a virtual reality environment made of two display surfaces: an interactive multitouch table, and a stereoscopic display wall. The framework addresses two current challenges in immersive visualization: 1) providing an appropriate overview+detail style of visualization while navigating through volume data, and 2) supporting interactive querying and data exploration, i.e., interrogating volume data. The approach extends the WIM metaphor, simultaneously displaying a large-scale detailed data visualization and an interactive miniature. Leveraging the table+wall hardware, horizontal slices are projected (like a shadow) down onto the table surface, providing a useful 2D data overview to complement the 3D views as well as a data context for interpreting 2D multitouch gestures made on the table. In addition to enabling effective navigation through complex geometries, extensions to the core Slice WIM technique support interacting with a set of multiple slices that persist on the table even as the user navigates around a scene and annotating and measuring data via points, paths, and volumes specified using interactive slices. Applications of the interface to two volume data sets are presented, and design decisions, limitations, and user feedback are discussed.

20.
J Thorac Cardiovasc Surg ; 141(5): 1170-7, 2011 May.
Article in English | MEDLINE | ID: mdl-21334010

ABSTRACT

OBJECTIVE: Pulmonary arteriovenous malformations caused by abnormal hepatic flow distribution can develop in patients with a single ventricle with an interrupted inferior vena cava. However, preoperatively determining the hepatic baffle design that optimizes hepatic flow distribution is far from trivial. The current study combines virtual surgery and numeric simulations to identify potential surgical strategies for patients with an interrupted inferior vena cava. METHODS: Five patients with an interrupted inferior vena cava and severe pulmonary arteriovenous malformations were enrolled. Their in vivo anatomies were reconstructed from magnetic resonance imaging (n = 4) and computed tomography (n = 1), and alternate virtual surgery options (intracardiac/extracardiac, Y-grafts, hepato-to-azygous shunts, and azygous-to-hepatic shunts) were generated for each. Hepatic flow distribution was assessed for all options using a fully validated computational flow solver. RESULTS: For patients with a single superior vena cava (n = 3), intracardiac/extracardiac connections proved dangerous, because even a small left or right offset led to a highly preferential hepatic flow distribution to the associated lung. The best results were obtained with either a Y-graft spanning the Kawashima to split the flow or hepato-to-azygous shunts to promote mixing. For patients with bilateral superior vena cavae (n = 2), results depended on the balance between the left and right superior inflows. When those were equal, connecting the hepatic baffle between the superior vena cavae performed well, but other options should be pursued otherwise. CONCLUSIONS: This study demonstrates how virtual surgery environments can benefit the clinical community, especially for patients with a single ventricle with an interrupted inferior vena cava. Furthermore, the sensitivity of the optimal baffle design to the superior inflows underscores the need to characterize both preoperative anatomy and flows to identify the best option.


Subject(s)
Abnormalities, Multiple , Arteriovenous Malformations/surgery , Azygos Vein/surgery , Fontan Procedure , Heart Defects, Congenital/surgery , Heart Ventricles/surgery , Pulmonary Artery/surgery , Pulmonary Veins/surgery , Surgery, Computer-Assisted , Vena Cava, Inferior/surgery , Arteriovenous Malformations/diagnosis , Arteriovenous Malformations/physiopathology , Azygos Vein/abnormalities , Azygos Vein/physiopathology , Child , Child, Preschool , Computer Simulation , Female , Fontan Procedure/adverse effects , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/physiopathology , Heart Ventricles/abnormalities , Hemodynamics , Humans , Liver Circulation , Magnetic Resonance Imaging , Male , Numerical Analysis, Computer-Assisted , Pulmonary Artery/abnormalities , Pulmonary Artery/physiopathology , Pulmonary Veins/abnormalities , Pulmonary Veins/physiopathology , Regional Blood Flow , Risk Assessment , Tomography, X-Ray Computed , United States , Vena Cava, Inferior/abnormalities , Vena Cava, Inferior/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...