Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 283(15): 10079-88, 2008 Apr 11.
Article in English | MEDLINE | ID: mdl-18276583

ABSTRACT

In the yeast Saccharomyces cerevisiae, the CKI1-encoded choline kinase catalyzes the committed step in the synthesis of phosphatidylcholine via the CDP-choline branch of the Kennedy pathway. Analysis of a P(CKI1)-lacZ reporter gene revealed that CKI1 expression was regulated by intracellular levels of the essential mineral zinc. Zinc depletion resulted in a concentration-dependent induction of CKI1 expression. This regulation was mediated by the zinc-sensing and zinc-inducible transcriptional activator Zap1p. A purified Zap1p probe interacted with two putative UAS(ZRE) sequences (ZRE1 and ZRE2) in the CKI1 promoter. Mutations of ZRE1 and ZRE2 to a nonconsensus UAS(ZRE) attenuated the induction of CKI1 expression in response to zinc depletion. A UAS(INO) element in the CKI1 promoter was responsible for stimulating CKI1 expression, but this element was not involved with the regulation by zinc depletion. The induction of CKI1 expression in zinc-depleted cells translated into increased choline kinase activity in vitro and in vivo, and an increase in phosphatidylcholine synthesis via the Kennedy pathway.


Subject(s)
Choline Kinase/biosynthesis , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Fungal/drug effects , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Trans-Activators/metabolism , Zinc/pharmacology , Choline Kinase/genetics , Dose-Response Relationship, Drug , Phosphatidylcholines/biosynthesis , Phosphatidylcholines/genetics , Response Elements/physiology , Saccharomyces cerevisiae Proteins/genetics , Trans-Activators/genetics , Transcription Factors , Zinc/deficiency
2.
Biochem Mol Biol Educ ; 36(1): 1-8, 2008 Jan.
Article in English | MEDLINE | ID: mdl-21591152

ABSTRACT

RNA binding proteins are a large and varied group of factors that are the driving force behind post-transcriptional gene regulation. By analogy with transcription factors, RNA binding proteins bind to various regions of the mRNAs that they regulate, usually upstream or downstream from the coding region, and modulate one of the five major processes in mRNA metabolism: splicing, polyadenylation, export, translation and decay. The most abundant RNA binding protein domain is called the RNA Recognition Motif (RRM)1. It is probably safe to say that an RRM-containing protein is making some contact with an mRNA throughout its existence. The transcriptional counterpart would likely be the histones, yet the multitude of specific functions that are results of RRM based interactions belies the universality of the motif. This complex and diverse application of a single protein motif was used as the basis to develop an advanced graduate level seminar course in RNA:protein interactions. The course, utilizing a learner-centered empowerment model, was developed to dissect each step in RNA metabolism from the perspective of an RRM containing protein. This provided a framework to discuss the development of specificity for the RRM for each required process.

SELECTION OF CITATIONS
SEARCH DETAIL
...