Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
2.
PLoS One ; 15(7): e0219632, 2020.
Article in English | MEDLINE | ID: mdl-32706829

ABSTRACT

INTRODUCTION: Surgical resection and systemic chemotherapy with temozolomide remain the mainstay for treatment of glioblastoma. However, many patients are not candidates for surgical resection given inaccessible tumor location or poor health status. Furthermore, despite being first line treatment, temozolomide has only limited efficacy. METHODS: The development of injectable hydrogel-based carrier systems allows for the delivery of a wide range of chemotherapeutics that can achieve high local concentrations, thus potentially avoiding systemic side effects and wide-spread neurotoxicity. To test this modality in a realistic environment, we developed a diblock copolypeptide hydrogel (DCH) capable of carrying and releasing paclitaxel, a compound that we found to be highly potent against primary gliomasphere cells. RESULTS: The DCH produced minimal tissue reactivity and was well tolerated in the immune-competent mouse brain. Paclitaxel-loaded hydrogel induced less tissue damage, cellular inflammation and reactive astrocytes than cremaphor-taxol (typical taxol-carrier) or hydrogel alone. In a deep subcortical xenograft model of glioblastoma in immunodeficient mice, injection of paclitaxel-loaded hydrogel led to local tumor control and improved survival. However, the tumor cells were highly migratory and were able to eventually escape the area of treatment. CONCLUSIONS: These findings suggest this technology may be ultimately applicable to patients with deep-seated inoperable tumors, but as currently formulated, complete tumor eradication would be highly unlikely. Future studies should focus on targeting the migratory potential of surviving cells.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Glioblastoma/drug therapy , Hydrogels/chemistry , Paclitaxel/therapeutic use , Peptides/chemistry , Animals , Antineoplastic Agents, Phytogenic/chemistry , Cell Line, Tumor , Central Nervous System/pathology , Drug Carriers/chemistry , Glioblastoma/mortality , Glioblastoma/pathology , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Paclitaxel/chemistry , Survival Rate , Temozolomide/chemistry , Temozolomide/therapeutic use , Xenograft Model Antitumor Assays
3.
J Neurooncol ; 142(3): 423-434, 2019 May.
Article in English | MEDLINE | ID: mdl-30838489

ABSTRACT

PURPOSE: Both IDH1-mutated and wild-type gliomas abundantly display aberrant CpG island hypermethylation. However, the potential role of hypermethylation in promoting gliomas, especially the most aggressive form, glioblastoma (GBM), remains poorly understood. METHODS: We analyzed RRBS-generated methylation profiles for 11 IDH1WT gliomas (including 7 GBMs), 24 IDH1MUT gliomas (including 6 GBMs), and 5 normal brain samples and employed TCGA GBM methylation profiles as a validation set. Upon classification of differentially methylated CpG islands by IDH1 status, we used integrated analysis of methylation and gene expression to identify SPINT2 as a top cancer related gene. To explore functional consequences of SPINT2 methylation in GBM, we validated SPINT2 methylation status using targeted bisulfite sequencing in a large cohort of GBM samples. We assessed DNA methylation-mediated SPINT2 gene regulation using 5-aza-2'-deoxycytidine treatment, DNMT1 knockdown and luciferase reporter assays. We conducted functional analyses of SPINT2 in GBM cell lines in vitro and in vivo. RESULTS: We identified SPINT2 as a candidate tumor-suppressor gene within a group of CpG islands (designated GT-CMG) that are hypermethylated in both IDH1MUT and IDH1WT gliomas but not in normal brain. We established that SPINT2 downregulation results from promoter hypermethylation, and that restoration of SPINT2 expression reduces c-Met activation and tumorigenic properties of GBM cells. CONCLUSIONS: We defined a previously under-recognized group of coordinately methylated CpG islands common to both IDH1WT and IDH1MUT gliomas (GT-CMG). Within GT-CMG, we identified SPINT2 as a top cancer-related candidate and demonstrated that SPINT2 suppressed GBM via down-regulation of c-Met activation.


Subject(s)
DNA Methylation , Gene Expression Regulation, Neoplastic , Glioblastoma/prevention & control , Isocitrate Dehydrogenase/genetics , Membrane Glycoproteins/genetics , Mutation , Proto-Oncogene Proteins c-met/metabolism , Animals , Apoptosis , Cell Proliferation , CpG Islands , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Promoter Regions, Genetic , Proto-Oncogene Proteins c-met/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
4.
Opt Express ; 25(18): 22066-22081, 2017 Sep 04.
Article in English | MEDLINE | ID: mdl-29041496

ABSTRACT

We have inserted into an unbiased semiconductor optical amplifier (SOA) a powerful control beam, with photon energy slightly smaller than that of the band-gap of its active region, for exciting two-photon absorption and the quadratic Stark effect. For the available SOA, we estimated these phenomena generated a nonlinear absorption coefficient ß= -865 cm/GW and induced an appreciable birefringence inside the amplifier waveguide, which significantly modified the polarization-state of a probe beam. Based on these effects, we have experimentally demonstrated the operation of an all-optical buffer, using an 80 Gb/s optical pulse comb, as well as an unbiased SOA, which was therefore, devoid of amplified spontaneous emission and pattern effects.

5.
Proc Natl Acad Sci U S A ; 114(38): 10220-10225, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28874539

ABSTRACT

Contrast-enhanced MRI is typically used to follow treatment response and progression in patients with glioblastoma (GBM). However, differentiating tumor progression from pseudoprogression remains a clinical dilemma largely unmitigated by current advances in imaging techniques. Noninvasive imaging techniques capable of distinguishing these two conditions could play an important role in the clinical management of patients with GBM and other brain malignancies. We hypothesized that PET probes for deoxycytidine kinase (dCK) could be used to differentiate immune inflammatory responses from other sources of contrast-enhancement on MRI. Orthotopic malignant gliomas were established in syngeneic immunocompetent mice and then treated with dendritic cell (DC) vaccination and/or PD-1 mAb blockade. Mice were then imaged with [18F]-FAC PET/CT and MRI with i.v. contrast. The ratio of contrast enhancement on MRI to normalized PET probe uptake, which we term the immunotherapeutic response index, delineated specific regions of immune inflammatory activity. On postmortem examination, FACS-based enumeration of intracranial tumor-infiltrating lymphocytes directly correlated with quantitative [18F]-FAC PET probe uptake. Three patients with GBM undergoing treatment with tumor lysate-pulsed DC vaccination and PD-1 mAb blockade were also imaged before and after therapy using MRI and a clinical PET probe for dCK. Unlike in mice, [18F]-FAC is rapidly catabolized in humans; thus, we used another dCK PET probe, [18F]-clofarabine ([18F]-CFA), that may be more clinically relevant. Enhanced [18F]-CFA PET probe accumulation was identified in tumor and secondary lymphoid organs after immunotherapy. Our findings identify a noninvasive modality capable of imaging the host antitumor immune response against intracranial tumors.


Subject(s)
Glioblastoma/diagnostic imaging , Animals , Cell Line , Female , Glioblastoma/therapy , Humans , Immunotherapy , Magnetic Resonance Imaging , Mice , Mice, Inbred C57BL , Positron-Emission Tomography
6.
J Neurooncol ; 134(1): 29-40, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28597184

ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumor and is associated with an extremely poor clinical prognosis. One pathologic hallmark of GBM is excessive vascularization with abnormal blood vessels. Extensive investigation of anti-angiogenic therapy as a treatment for recurrent GBM has been performed. Bevacizumab, a monoclonal anti-vascular endothelial growth factor A (VEGF-A), suggests a progression-free survival benefit but no overall survival benefit. Developing novel anti-angiogenic therapies are urgently needed in controlling GBM growth. In this study, we demonstrate tumor expression of epithelial membrane protein-2 (EMP2) promotes angiogenesis both in vitro and in vivo using cell lines from human GBM. Mechanistically, this pro-angiogenic effect of EMP2 was partially through upregulating tumor VEGF-A levels. A potential therapeutic effect of a systemic administration of anti-EMP2 IgG1 on intracranial xenografts was observed resulting in both significant reduction of tumor load and decreased tumor vasculature. These results suggest the potential for anti-EMP2 IgG1 as a promising novel anti-angiogenic therapy for GBM. Further investigation is needed to fully understand the molecular mechanisms how EMP2 modulates GBM pathogenesis and progression and to further characterize anti-EMP2 therapy in GBM.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Glioblastoma/pathology , Membrane Glycoproteins/metabolism , Neovascularization, Pathologic/etiology , Animals , Antigens, CD34/metabolism , Cell Line, Tumor , Cell Movement/genetics , Female , Glioblastoma/drug therapy , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Human Umbilical Vein Endothelial Cells/physiology , Humans , Immunoglobulin G/therapeutic use , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Mice , Mice, Nude , Microarray Analysis , Neovascularization, Pathologic/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transfection , Vascular Endothelial Growth Factor A/metabolism , Xenograft Model Antitumor Assays
7.
Appl Biochem Biotechnol ; 183(1): 265-279, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28281182

ABSTRACT

Angiogenesis plays a critical role in progression of malignant gliomas. The development of glioma-specific labeling molecules that can aid detection and visualization of angiogenesis can help surgical planning and improve treatment outcome. The aim of this study was to evaluate if two peptides (GX1 and RGD-GX1) linked to angiogenesis can be used as an MR-imaging markers of angiogenesis. MR imaging was performed in U87 glioblastoma-bearing NOD-SCID mice at different time points between 15 and 120 min post-injection to visualize particle distribution. GX1 and RGD-GX1 exhibited the highest accumulation in U87 glioblastoma at 120 min post i.v. administration. GX1-conjugated agents lead to higher decrease in transverse relaxation time (T 2) (i.e., stronger contrast enhancement) than RGD-GX1-conjugated agents in U87 glioblastoma tumor model. In addition, we tested if U87-IDH1R132 mutated cell line had different pattern of GX1 or RGD-GX1 particle accumulation. Responses in U87-IDH1WT followed a similar pattern with GX1 contrast agents; however, lower contrast enhancement was observed with RGD-GX1 agents. The specific binding of these peptides to human glioblastoma xenograft in the brain was confirmed by magnetic resonance imaging. The contrast enhancement following injection of magnetonanoparticles conjugated to GX1 peptide matched well with CD31 staining and iron staining.


Subject(s)
Brain Neoplasms , Contrast Media , Glioma , Magnetic Resonance Imaging , Magnetite Nanoparticles , Neoplasms, Experimental , Neovascularization, Pathologic , Oligopeptides , Animals , Brain Neoplasms/blood supply , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/metabolism , Cell Line, Tumor , Contrast Media/chemistry , Contrast Media/pharmacology , Glioma/blood supply , Glioma/diagnostic imaging , Glioma/metabolism , Humans , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/therapeutic use , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasms, Experimental/blood supply , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/metabolism , Neovascularization, Pathologic/diagnostic imaging , Neovascularization, Pathologic/metabolism , Oligopeptides/chemistry , Oligopeptides/pharmacology
8.
Neuro Oncol ; 19(6): 796-807, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28115578

ABSTRACT

Background: Adaptive immune resistance in the tumor microenvironment appears to attenuate the immunotherapeutic targeting of glioblastoma (GBM). In this study, we identified a tumor-infiltrating myeloid cell (TIM) population that expands in response to dendritic cell (DC) vaccine treatment. The aim of this study was to understand how this programmed death ligand 1 (PD-L1)-expressing population restricts activation and tumor-cytolytic function of vaccine-induced tumor-infiltrating lymphocytes (TILs). Methods: To test this hypothesis in our in vivo preclinical model, we treated mice bearing intracranial gliomas with DC vaccination ± murine anti-PD-1 monoclonal antibody (mAb) blockade or a colony stimulating factor 1 receptor inhibitor (CSF-1Ri) (PLX3397) and measured overall survival. We then harvested and characterized the PD-L1+ TIM population and its role in TIL activation and tumor cytolysis in vitro. Results: Our data indicated that the majority of PD-L1 expression in the GBM environment is contributed by TIMs rather than by tumor cells themselves. While PD-1 blockade partially reversed the TIL dysfunction, targeting TIMs directly with CSF-1Ri altered TIM expression of key chemotactic factors associated with promoting increased TIL infiltration after vaccination. Neither PD-1 mAb nor CSF-1Ri had a demonstrable therapeutic benefit alone, but when combined with DC vaccination, a significant survival benefit was observed. When the tripartite regimen was given (DC vaccine, PD-1 mAb, PLX3397), long-term survival was noted together with an increase in the number of TILs and TIL activation. Conclusion: Together, these studies elucidate the role that TIMs play in mediating adaptive immune resistance in the GBM microenvironment and provide evidence that they can be manipulated pharmacologically with agents that are clinically available. Development of immune resistance in response to active vaccination in GBM can be reversed with dual administration of CSF-1Ri and PD-1 mAb.


Subject(s)
Antibodies, Monoclonal/pharmacology , B7-H1 Antigen/antagonists & inhibitors , Cancer Vaccines/administration & dosage , Glioblastoma/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Myeloid Cells/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , Female , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/prevention & control , Humans , Mice , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Receptor, Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptor, Macrophage Colony-Stimulating Factor/immunology , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Tumor Cells, Cultured , Tumor Microenvironment , Xenograft Model Antitumor Assays
9.
JCI Insight ; 1(10)2016 Jul 07.
Article in English | MEDLINE | ID: mdl-27453950

ABSTRACT

DC vaccination with autologous tumor lysate has demonstrated promising results for the treatment of glioblastoma (GBM) in preclinical and clinical studies. While the vaccine appears capable of inducing T cell infiltration into tumors, the effectiveness of active vaccination in progressively growing tumors is less profound. In parallel, a number of studies have identified negative costimulatory pathways, such as programmed death 1/programmed death ligand 1 (PD-1/PD-L1), as relevant mediators of the intratumoral immune responses. Clinical responses to PD-1 pathway inhibition, however, have also been varied. To evaluate the relevance to established glioma, the effects of PD-1 blockade following DC vaccination were tested in intracranial (i.c.) glioma tumor- bearing mice. Treatment with both DC vaccination and PD-1 mAb blockade resulted in long-term survival, while neither agent alone induced a survival benefit in animals with larger, established tumors. This survival benefit was completely dependent on CD8+ T cells. Additionally, DC vaccine plus PD-1 mAb blockade resulted in the upregulation of integrin homing and immunologic memory markers on tumor-infiltrating lymphocytes (TILs). In clinical samples, DC vaccination in GBM patients was associated with upregulation of PD-1 expression in vivo, while ex vivo blockade of PD-1 on freshly isolated TILs dramatically enhanced autologous tumor cell cytolysis. These findings strongly suggest that the PD-1/PD-L1 pathway plays an important role in the adaptive immune resistance of established GBM in response to antitumor active vaccination and provide us with a rationale for the clinical translation of this combination therapy.

10.
Neuro Oncol ; 18(3): 368-78, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26330563

ABSTRACT

BACKGROUND: Immunotherapy is an ideal treatment modality to specifically target the diffusely infiltrative tumor cells of malignant gliomas while sparing the normal brain parenchyma. However, progress in the development of these therapies for glioblastoma has been slow due to the lack of immunogenic antigen targets that are expressed uniformly and selectively by gliomas. METHODS: We utilized human glioblastoma cell cultures to induce expression of New York-esophageal squamous cell carcinoma (NY-ESO-1) following in vitro treatment with the demethylating agent decitabine. We then investigated the phenotype of lymphocytes specific for NY-ESO-1 using flow cytometry analysis and cytotoxicity against cells treated with decitabine using the xCelligence real-time cytotoxicity assay. Finally, we examined the in vivo application of this immune therapy using an intracranially implanted xenograft model for in situ T cell trafficking, survival, and tissue studies. RESULTS: Our studies showed that treatment of intracranial glioma-bearing mice with decitabine reliably and consistently induced the expression of an immunogenic tumor-rejection antigen, NY-ESO-1, specifically in glioma cells and not in normal brain tissue. The upregulation of NY-ESO-1 by intracranial gliomas was associated with the migration of adoptively transferred NY-ESO-1-specific lymphocytes along white matter tracts to these tumors in the brain. Similarly, NY-ESO-1-specific adoptive T cell therapy demonstrated antitumor activity after decitabine treatment and conferred a highly significant survival benefit to mice bearing established intracranial human glioma xenografts. Transfer of NY-ESO-1-specific T cells systemically was superior to intracranial administration and resulted in significantly extended and long-term survival of animals. CONCLUSION: These results reveal an innovative, clinically feasible strategy for the treatment of glioblastoma.


Subject(s)
Antigens, Neoplasm/immunology , Glioblastoma/therapy , Immunotherapy, Adoptive , T-Lymphocytes/drug effects , Animals , Antigens, Neoplasm/metabolism , Azacitidine/analogs & derivatives , Azacitidine/therapeutic use , Cell Line, Tumor , Decitabine , Disease Models, Animal , Glioblastoma/immunology , Glioblastoma/metabolism , Humans , Mice
11.
Clin Cancer Res ; 20(22): 5808-22, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25224277

ABSTRACT

PURPOSE: IDH1/2-mutant gliomas harbor a distinct glioma-CpG island methylation phenotype (G-CIMP) that may promote the initiation and progression of secondary pathway gliomas by silencing tumor-suppressive genes. The potential role of tumor-suppressive microRNAs (miRNA; miR) in this process is not understood. EXPERIMENTAL DESIGN: To identify potential tumor-suppressive miRNA hypermethylated in glioma, the methylation profiles of IDH1/2(WT) gliomas (n = 11) and IDH1(MUT) glioma (n = 20) were compared by using massively parallel reduced representation bisulfite sequencing (RRBS). The methylation status of selected miRNA was validated by using targeted bisulfite sequencing (BiSEQ) in a large cohort of glioma tissue samples including 219 IDH1(WT) and 72 IDH1/2(MUT) samples. The expression of selected miRNAs was determined by using the TaqMan qPCR. Functional analyses of miR148a were conducted and target genes were identified. RESULTS: We identify miR148a as a novel, G-CIMP-associated miRNA whose methylation is tightly correlated with IDH1 mutation and associated with improved survival in patients with malignant glioma. We confirm that downregulation of miR148a can occur via DNA methylation. We demonstrate that IDH1 mutation provides a mechanism of miR148a methylation and downregulation, and that restoration of miR148a reduced tumorigenic properties of glioma cells, possibly by targeting DNMT1. CONCLUSIONS: We identify miR148a as a novel G-CIMP-associated miRNA, and provide results suggesting that miR148a restoration may have therapeutic implications.


Subject(s)
Brain Neoplasms/genetics , CpG Islands , DNA Methylation , Gene Silencing , Glioma/genetics , Isocitrate Dehydrogenase/genetics , MicroRNAs/genetics , Mutation , Animals , Antineoplastic Agents/pharmacology , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Cell Line, Tumor , Cluster Analysis , Cohort Studies , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Glioma/mortality , Glioma/pathology , Heterografts , Humans , Prognosis , Tumor Burden/drug effects , Tumor Burden/genetics
12.
J Immunother Cancer ; 2: 8, 2014.
Article in English | MEDLINE | ID: mdl-25054063

ABSTRACT

BACKGROUND: Histone deacetylase (HDAC) inhibitors are a class of agents that have potent antitumor activity with a reported ability to upregulate MHC and costimulatory molecule expression. We hypothesized that epigenetic pharmacological immunomodulation could sensitize tumors to immune mediated cell death with an adoptive T cell therapy. METHODS: The pan-HDAC inhibitor, LBH589, was combined with gp100 specific T cell immunotherapy in an in vivo B16 melanoma model and in an in vivo non-tumor bearing model. Tumor regression, tumor specific T cell function and phenotype, and serum cytokine levels were evaluated. RESULTS: Addition of LBH589 to an adoptive cell transfer therapy significantly decreased tumor burden while sustaining systemic pro-inflammatory levels. Furthermore, LBH589 was able to enhance gp100 specific T cell survival and significantly decrease T regulatory cell populations systemically and intratumorally. Even in the absence of tumor, LBH589 was able to enhance the proliferation, retention, and polyfunctional status of tumor specific T cells, suggesting its effects were T cell specific. In addition, LBH589 induced significantly higher levels of the IL-2 receptor (CD25) and the co-stimulatory molecule OX-40 in T cells. CONCLUSION: These results demonstrate that immunomodulation of adoptively transferred T cells by LBH589 provides a novel mechanism to increase in vivo antitumor efficacy of effector CD8 T cells.

13.
J Immunother Cancer ; 2: 10, 2014.
Article in English | MEDLINE | ID: mdl-24883189

ABSTRACT

BACKGROUND: Immunotherapeutic approaches, such as dendritic cell (DC) vaccination, have emerged as promising strategies in the treatment of glioblastoma. Despite their promise, however, the absence of objective biomarkers and/or immunological monitoring techniques to assess the clinical efficacy of immunotherapy still remains a primary limitation. To address this, we sought to identify a functional biomarker for anti-tumor immune responsiveness associated with extended survival in glioblastoma patients undergoing DC vaccination. METHODS: 28 patients were enrolled and treated in two different Phase 1 DC vaccination clinical trials at UCLA. To assess the anti-tumor immune response elicited by therapy, we studied the functional responsiveness of pre- and post-vaccination peripheral blood lymphocytes (PBLs) to the immunostimulatory cytokines interferon-gamma (IFN-γ) and interleukin-2 (IL-2) in 21 of these patients for whom we had adequate material. Immune responsiveness was quantified by measuring downstream phosphorylation events of the transcription factors, STAT-1 and STAT-5, via phospho-specific flow cytometry. RESULTS: DC vaccination induced a significant decrease in the half-maximal concentration (EC-50) of IL-2 required to upregulate pSTAT-5 specifically in CD3(+)CD8(+) T lymphocytes (p < 0.045). Extended survival was also associated with an increased per cell phosphorylation of STAT-5 in cytotoxic T-cells following IL-2 stimulation when the median post/pre pSTAT-5 ratio was used to dichotomize the patients (p = 0.0015, log-rank survival; hazard ratio = 0.1834, p = 0.018). Patients whose survival was longer than two years had a significantly greater pSTAT-5 ratio (p = 0.015), but, contrary to our expectations, a significantly lower pSTAT-1 ratio (p = 0.038). CONCLUSIONS: Our results suggest that monitoring the pSTAT signaling changes in PBL may provide a functional immune monitoring measure predictive of clinical efficacy in DC-vaccinated patients.

14.
Mol Ther Nucleic Acids ; 2: e109, 2013 Jul 23.
Article in English | MEDLINE | ID: mdl-23881452

ABSTRACT

Development of biofluid-based molecular diagnostic tests for cancer is an important step towards tumor characterization and real-time monitoring in a minimally invasive fashion. Extracellular vesicles (EVs) are released from tumor cells into body fluids and can provide a powerful platform for tumor biomarkers because they carry tumor proteins and nucleic acids. Detecting rare point mutations in the background of wild-type sequences in biofluids such as blood and cerebrospinal fluid (CSF) remains a major challenge. Techniques such as BEAMing (beads, emulsion, amplification, magnetics) PCR and droplet digital PCR (ddPCR) are substantially more sensitive than many other assays for mutant sequence detection. Here, we describe a novel approach that combines biofluid EV RNA and BEAMing RT-PCR (EV-BEAMing), as well droplet digital PCR to interrogate mutations from glioma tumors. EVs from CSF of patients with glioma were shown to contain mutant IDH1 transcripts, and we were able to reliably detect and quantify mutant and wild-type IDH1 RNA transcripts in CSF of patients with gliomas. EV-BEAMing and EV-ddPCR represent a valuable new strategy for cancer diagnostics, which can be applied to a variety of biofluids and neoplasms.Molecular Therapy-Nucleic Acids (2013) 2, e109; doi:10.1038/mtna.2013.28; published online 23 July 2013.

15.
Clin Cancer Res ; 19(15): 4137-48, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23780889

ABSTRACT

PURPOSE: Individual or combined strategies of cellular therapy with alloreactive CTLs (alloCTL) and gene therapy using retroviral replicating vectors (RRV) encoding a suicide prodrug activating gene were explored for the treatment of breast tumors metastatic to the brain. EXPERIMENTAL DESIGN: AlloCTL, sensitized to the HLA of MDA-MB-231 breast cancer cells, were examined in vitro for antitumor functionality toward breast cancer targets. RRV encoding the yeast cytosine deaminase (CD) gene was tested in vivo for virus spread, ability to infect, and kill breast cancer targets when exposed to 5-fluorocytosine (5-FC). Individual and combination treatments were tested in subcutaneous and intracranial xenograft models with 231BR, a brain tropic variant. RESULTS: AlloCTL preparations were cytotoxic, proliferated, and produced IFN-γ when coincubated with target cells displaying relevant HLA. In vivo, intratumorally placed alloCTL trafficked through one established intracranial 231BR focus to another in contralateral brain and induced tumor cell apoptosis. RRV-CD efficiently spread in vivo, infected 231BR and induced their apoptosis upon 5-FC exposure. Subcutaneous tumor volumes were significantly reduced in alloCTL and/or gene therapy-treated groups compared to control groups. Mice with established intracranial 231BR tumors treated with combined alloCTL and RRV-CD had a median survival of 97.5 days compared with single modalities (50-83 days); all experimental treatment groups survived significantly longer than sham-treated groups (median survivals 31.5 or 40 days) and exhibited good safety/toxicity profiles. CONCLUSION: The results indicate combining cellular and suicide gene therapies is a viable strategy for the treatment of established breast tumors in the brain.


Subject(s)
Brain Neoplasms/drug therapy , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Genetic Therapy , T-Lymphocytes, Cytotoxic , Adenoviridae , Animals , Brain Neoplasms/genetics , Brain Neoplasms/secondary , Breast Neoplasms/pathology , Combined Modality Therapy , Cytosine Deaminase/genetics , Cytosine Deaminase/therapeutic use , Female , Flucytosine/administration & dosage , Genes, Transgenic, Suicide/genetics , Genetic Vectors , Humans , Mice , Prodrugs/administration & dosage
16.
Cancer Res ; 73(9): 2850-62, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23440422

ABSTRACT

The sterol regulatory element-binding proteins (SREBP) are key transcriptional regulators of lipid metabolism and cellular growth. It has been proposed that SREBP signaling regulates cellular growth through its ability to drive lipid biosynthesis. Unexpectedly, we find that loss of SREBP activity inhibits cancer cell growth and viability by uncoupling fatty acid synthesis from desaturation. Integrated lipid profiling and metabolic flux analysis revealed that cancer cells with attenuated SREBP activity maintain long-chain saturated fatty acid synthesis, while losing fatty acid desaturation capacity. We traced this defect to the uncoupling of fatty acid synthase activity from stearoyl-CoA desaturase 1 (SCD1)-mediated desaturation. This deficiency in desaturation drives an imbalance between the saturated and monounsaturated fatty acid pools resulting in severe lipotoxicity. Importantly, replenishing the monounsaturated fatty acid pool restored growth to SREBP-inhibited cells. These studies highlight the importance of fatty acid desaturation in cancer growth and provide a novel mechanistic explanation for the role of SREBPs in cancer metabolism.


Subject(s)
Gene Expression Regulation, Neoplastic , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Neoplasms/metabolism , Animals , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Fatty Acid Synthases/metabolism , Gene Expression Profiling , Humans , Mice , Mice, Inbred NOD , Models, Statistical , Neoplasm Transplantation , Signal Transduction , Stearoyl-CoA Desaturase/metabolism , Sterols/metabolism
17.
J Immunother ; 36(2): 152-7, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23377664

ABSTRACT

Dendritic cell (DC) vaccination is emerging as a promising therapeutic option for malignant glioma patients. However, the optimal antigen formulation for loading these cells has yet to be established. The objective of this study was to compare the safety, feasibility, and immune responses of malignant glioma patients on 2 different DC vaccination protocols. Twenty-eight patients were treated with autologous tumor lysate (ATL)-pulsed DC vaccination, whereas 6 patients were treated with glioma-associated antigen (GAA) peptide-pulsed DCs. Safety, toxicity, feasibility, and correlative immune monitoring assay results were compared between patients on each trial. Because of HLA subtype restrictions on the GAA-DC trial, 6/15 screened patients were eligible for treatment, whereas 28/32 patients passed eligibility screening for the ATL-DC trial. Elevated frequencies of activated natural killer cells were observed in the peripheral blood from GAA-DC patients compared with the ATL-DC patients. In addition, a significant correlation was observed between decreased regulatory T lymphocyte (Treg) ratios (postvaccination/prevaccination) and overall survival (P = 0.004) in patients on both trials. In fact, Treg ratios were independently prognostic for overall survival in these patients, whereas tumor pathology was not in multivariate analyses. In conclusion, these results suggest that ATL-DC vaccination is associated with wider patient eligibility compared with GAA-DC vaccination. Decreased postvaccination/prevaccination Treg ratios and decreased frequencies of activated natural killer cells were associated with prolonged survival in patients from both trials, suggesting that these lymphocyte subsets may be relevant immune monitoring endpoints for immunotherapy protocols in malignant glioma patients.


Subject(s)
Antigens, Neoplasm , Brain Neoplasms/therapy , Cancer Vaccines , Dendritic Cells/immunology , Glioma/therapy , Adoptive Transfer , Adult , Antigens, Neoplasm/administration & dosage , Antigens, Neoplasm/immunology , Antigens, Neoplasm/therapeutic use , Brain Neoplasms/immunology , Cancer Vaccines/adverse effects , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Disease-Free Survival , Female , Glioma/immunology , Humans , Immunotherapy, Adoptive , Killer Cells, Natural/immunology , Male , Middle Aged , T-Lymphocytes, Regulatory/immunology , Treatment Outcome , Vaccination
18.
Neuro Oncol ; 14(12): 1465-72, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23090985

ABSTRACT

The arginine 132 (R132) mutation of isocitrate dehydrogenase -1 (IDH1(R132)) results in production of 2-hydroxyglutarate (2-HG) and is associated with a better prognosis compared with wild-type (WT) in glioma patients. The majority of lower-grade gliomas express IDH1(R132), whereas this mutation is rare in grade IV gliomas. The aim of this study was to noninvasively investigate metabolic and physiologic changes associated with the IDH1 mutation in a mouse glioma model. Using a 7T magnet, we compared MRI and proton magnetic resonance spectroscopy (MRS) in U87 glioma cells overexpressing either the mutated IDH1(R132) or IDH1 wild-type (IDH1(WT)) gene in a mouse flank xenograft model. Flank tumors overexpressing IDH1(R132) showed a resonance at 2.25 ppm corresponding to the 2-HG peak described for human IDH1(R132) gliomas. WT tumors lacked this peak in all cases. IDH1 mutant tumors demonstrated significantly reduced glutamate by in vivo MRS. There were no significant differences in T(2), apparent diffusion coefficient (ADC), or perfusion values between the mutant and IDH1(WT) tumors. The IDH1(R132) mutation results in 2-HG resonance at 2.25 ppm and a reduction of glutamate levels as determined by MRS. Our results establish a model system where 2-HG can be monitored noninvasively, which should be helpful in validating 2-HG levels as a prognostic and/or predictive biomarker in glioma.


Subject(s)
Glioma/genetics , Glioma/metabolism , Glutarates/analysis , Isocitrate Dehydrogenase/genetics , Animals , Cell Line, Tumor , Disease Models, Animal , Glutarates/metabolism , Humans , Immunohistochemistry , Magnetic Resonance Spectroscopy , Male , Mice , Mice, Inbred NOD , Mice, SCID , Mutation , Protons
19.
J Neurooncol ; 107(1): 197-205, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22015945

ABSTRACT

Mutations of the isocitrate dehydrogenase 1 and 2 genes (IDH1 and IDH2) are commonly found in primary brain cancers. We previously reported that a novel enzymatic activity of these mutations results in the production of the putative oncometabolite, R(-)-2-hydroxyglutarate (2-HG). Here we investigated the ability of magnetic resonance spectroscopy (MRS) to detect 2-HG production in order to non-invasively identify patients with IDH1 mutant brain tumors. Patients with intrinsic glial brain tumors (n = 27) underwent structural and spectroscopic magnetic resonance imaging prior to surgery. 2-HG levels from MRS data were quantified using LC-Model software, based upon a simulated spectrum obtained from a GAMMA library added to the existing prior knowledge database. The resected tumors were then analyzed for IDH1 mutational status by genomic DNA sequencing, Ki-67 proliferation index by immunohistochemistry, and concentrations of 2-HG and other metabolites by liquid chromatography-mass spectrometry (LC-MS). MRS detected elevated 2-HG levels in gliomas with IDH1 mutations compared to those with wild-type IDH1 (P = 0.003). The 2-HG levels measured in vivo with MRS were significantly correlated with those measured ex vivo from the corresponding tumor samples using LC-MS (r (2) = 0.56; P = 0.0001). Compared with wild-type tumors, those with IDH1 mutations had elevated choline (P = 0.01) and decreased glutathione (P = 0.03) on MRS. Among the IDH1 mutated gliomas, quantitative 2-HG values were correlated with the Ki-67 proliferation index of the tumors (r ( 2 ) = 0.59; P = 0.026). In conclusion, water-suppressed proton ((1)H) MRS provides a non-invasive measure of 2-HG in gliomas, and may serve as a potential biomarker for patients with IDH1 mutant brain tumors. In addition to 2-HG, alterations in several other metabolites measured by MRS correlate with IDH1 mutation status.


Subject(s)
Biomarkers, Tumor/metabolism , Glioma/genetics , Glioma/metabolism , Glutarates/metabolism , Isocitrate Dehydrogenase/genetics , Magnetic Resonance Spectroscopy , Mutation/genetics , Adult , Aged , Aged, 80 and over , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Chromatography, Liquid , DNA, Neoplasm/genetics , Female , Follow-Up Studies , Glioma/pathology , Humans , Magnetic Resonance Imaging , Male , Mass Spectrometry , Middle Aged , Polymerase Chain Reaction , Prognosis , Prospective Studies , Young Adult
20.
Cancer Discov ; 1(5): 442-56, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22059152

ABSTRACT

Glioblastoma (GBM) is the most common malignant primary brain tumor of adults and one of the most lethal of all cancers. Epidermal growth factor receptor (EGFR) mutations (EGFRvIII) and phosphoinositide 3-kinase (PI3K) hyperactivation are common in GBM, promoting tumor growth and survival, including through sterol regulatory element-binding protein 1 (SREBP-1)-dependent lipogenesis. The role of cholesterol metabolism in GBM pathogenesis, its association with EGFR/PI3K signaling, and its potential therapeutic targetability are unknown. In our investigation, studies of GBM cell lines, xenograft models, and GBM clinical samples, including those from patients treated with the EGFR tyrosine kinase inhibitor lapatinib, uncovered an EGFRvIII-activated, PI3K/SREBP-1-dependent tumor survival pathway through the low-density lipoprotein receptor (LDLR). Targeting LDLR with the liver X receptor (LXR) agonist GW3965 caused inducible degrader of LDLR (IDOL)-mediated LDLR degradation and increased expression of the ABCA1 cholesterol efflux transporter, potently promoting tumor cell death in an in vivo GBM model. These results show that EGFRvIII can promote tumor survival through PI3K/SREBP-1-dependent upregulation of LDLR and suggest a role for LXR agonists in the treatment of GBM patients.


Subject(s)
Brain Neoplasms/drug therapy , Cell Death/drug effects , ErbB Receptors/metabolism , Glioblastoma/drug therapy , Orphan Nuclear Receptors/agonists , Proto-Oncogene Proteins c-akt/genetics , Receptors, LDL/metabolism , Signal Transduction/drug effects , Sterol Regulatory Element Binding Protein 1/metabolism , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Death/genetics , Cholesterol/genetics , Cholesterol/metabolism , ErbB Receptors/genetics , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , HeLa Cells , Humans , Lapatinib , Liver X Receptors , Mice , Mice, SCID , Orphan Nuclear Receptors/genetics , Orphan Nuclear Receptors/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Quinazolines/therapeutic use , Receptors, LDL/genetics , Sterol Regulatory Element Binding Protein 1/genetics , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...