Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Plants (Basel) ; 13(5)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38475474

ABSTRACT

Type IVc Pili (T4cP), also known as Tad or Flp pili, are long thin microbial filaments that are made up of small-sized pilins. These appendages serve different functions in bacteria, including attachment, biofilm formation, surface sensing, motility, and host colonization. Despite their relevant role in diverse microbial lifestyles, knowledge about T4cP in bacteria that establish symbiosis with legumes, collectively referred to as rhizobia, is still limited. Sinorhizobium meliloti contains two clusters of T4cP-related genes: flp-1 and flp-2, which are located on the chromosome and the pSymA megaplasmid, respectively. Bundle-forming pili associated with flp-1 are involved in the competitive nodulation of alfalfa plants, but the role of flp-2 remains elusive. In this work, we have performed a comprehensive bioinformatic analysis of T4cP genes in the highly competitive S. meliloti GR4 strain and investigated the role of its flp clusters in pilus biogenesis, motility, and in the interaction with alfalfa. Single and double flp-cluster mutants were constructed on the wild-type genetic background as well as in a flagellaless derivative strain. Our data demonstrate that both chromosomal and pSymA flp clusters are functional in pili biogenesis and contribute to surface translocation and nodule formation efficiency in GR4. In this strain, the presence of flp-1 in the absence of flp-2 reduces the competitiveness for nodule occupation.

2.
Methods Mol Biol ; 2751: 205-217, 2024.
Article in English | MEDLINE | ID: mdl-38265718

ABSTRACT

Rhizobia are soil proteobacteria able to establish a nitrogen-fixing interaction with legumes. In this interaction, rhizobia must colonize legume roots, infect them, and become hosted inside new organs formed by the plants and called nodules. Rhizobial motility, not being essential for symbiosis, might affect the degree of success of the interaction with legumes. Because of this, the study of rhizobial motility (either swimming or surface motility) might be of interest for research teams working on rhizobial symbiotic performance. In this chapter, we describe the protocols we use in our laboratories for studying the different types of motilities exhibited by Sinorhizobium fredii and Sinorhizobium meliloti, as well as for analyzing the presence of flagella in these bacteria. All these protocols might be used (or adapted) for studying bacterial motility in rhizobia.


Subject(s)
Fabaceae , Rhizobium , Swimming , Vegetables , Flagella
3.
Int J Mol Sci ; 24(6)2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36982921

ABSTRACT

Bacterial surface motility is a complex microbial trait that contributes to host colonization. However, the knowledge about regulatory mechanisms that control surface translocation in rhizobia and their role in the establishment of symbiosis with legumes is still limited. Recently, 2-tridecanone (2-TDC) was identified as an infochemical in bacteria that hampers microbial colonization of plants. In the alfalfa symbiont Sinorhizobium meliloti, 2-TDC promotes a mode of surface motility that is mostly independent of flagella. To understand the mechanism of action of 2-TDC in S. meliloti and unveil genes putatively involved in plant colonization, Tn5 transposants derived from a flagellaless strain that were impaired in 2-TDC-induced surface spreading were isolated and genetically characterized. In one of the mutants, the gene coding for the chaperone DnaJ was inactivated. Characterization of this transposant and newly obtained flagella-minus and flagella-plus dnaJ deletion mutants revealed that DnaJ is essential for surface translocation, while it plays a minor role in swimming motility. DnaJ loss-of-function reduces salt and oxidative stress tolerance in S. meliloti and hinders the establishment of efficient symbiosis by affecting nodule formation efficiency, cellular infection, and nitrogen fixation. Intriguingly, the lack of DnaJ causes more severe defects in a flagellaless background. This work highlights the role of DnaJ in the free-living and symbiotic lifestyles of S. meliloti.


Subject(s)
Nitrogen Fixation , Sinorhizobium meliloti , Nitrogen Fixation/genetics , Sinorhizobium meliloti/genetics , Symbiosis/genetics , Medicago sativa/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
4.
J Comput Biol ; 30(7): 751-765, 2023 07.
Article in English | MEDLINE | ID: mdl-36961389

ABSTRACT

TRIMER, Transcription Regulation Integrated with MEtabolic Regulation, is a genome-scale modeling pipeline targeting at metabolic engineering applications. Using TRIMER, regulated metabolic reactions can be effectively predicted by integrative modeling of metabolic reactions with a transcription factor-gene regulatory network (TRN), which is modeled through a Bayesian network (BN). In this article, we focus on sensitivity analysis of metabolic flux prediction for uncertainty quantification of BN structures for TRN modeling in TRIMER. We propose a computational strategy to construct the uncertainty class of TRN models based on the inferred regulatory order uncertainty given transcriptomic expression data. With that, we analyze the prediction sensitivity of the TRIMER pipeline for the metabolite yields of interest. The obtained sensitivity analyses can guide optimal experimental design (OED) to help acquire new data that can enhance TRN modeling and achieve specific metabolic engineering objectives, including metabolite yield alterations. We have performed small- and large-scale simulated experiments, demonstrating the effectiveness of our developed sensitivity analysis strategy for BN structure learning to quantify the edge importance in terms of metabolic flux prediction uncertainty reduction and its potential to effectively guide OED.


Subject(s)
Metabolic Networks and Pathways , Models, Biological , Bayes Theorem , Metabolic Networks and Pathways/genetics , Gene Regulatory Networks , Metabolic Flux Analysis
6.
Int J Mol Sci ; 23(14)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35887044

ABSTRACT

Bacteria can spread on surfaces to colonize new environments and access more resources. Rhizobia, a group of α- and ß-Proteobacteria, establish nitrogen-fixing symbioses with legumes that rely on a complex signal interchange between the partners. Flavonoids exuded by plant roots and the bacterial transcriptional activator NodD control the transcription of different rhizobial genes (the so-called nod regulon) and, together with additional bacterial regulatory proteins (such as TtsI, MucR or NolR), influence the production of different rhizobial molecular signals. In Sinorhizobium fredii HH103, flavonoids and NodD have a negative effect on exopolysaccharide production and biofilm production. Since biofilm formation and motility are often inversely regulated, we have analysed whether flavonoids may influence the translocation of S. fredii HH103 on surfaces. We show that the presence of nod gene-inducing flavonoids does not affect swimming but promotes a mode of surface translocation, which involves both flagella-dependent and -independent mechanisms. This surface motility is regulated in a flavonoid-NodD1-TtsI-dependent manner, relies on the assembly of the symbiotic type 3 secretion system (T3SS), and involves the participation of additional modulators of the nod regulon (NolR and MucR1). To our knowledge, this is the first evidence indicating the participation of T3SS in surface motility in a plant-interacting bacterium. Interestingly, flavonoids acting as nod-gene inducers also participate in the inverse regulation of surface motility and biofilm formation, which could contribute to a more efficient plant colonisation.


Subject(s)
Rhizobium , Sinorhizobium fredii , Bacterial Proteins/metabolism , Flavonoids/metabolism , Flavonoids/pharmacology , Gene Expression Regulation, Bacterial , Plants/metabolism , Rhizobium/metabolism , Sinorhizobium fredii/metabolism , Symbiosis/physiology , Type III Secretion Systems/metabolism
7.
STAR Protoc ; 3(1): 101184, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35243375

ABSTRACT

This protocol explains the pipeline for condition-dependent metabolite yield prediction using Transcription Regulation Integrated with MEtabolic Regulation (TRIMER). TRIMER targets metabolic engineering applications via a hybrid model integrating transcription factor (TF)-gene regulatory network (TRN) with a Bayesian network (BN) inferred from transcriptomic expression data to effectively regulate metabolic reactions. For E. coli and yeast, TRIMER achieves reliable knockout phenotype and flux predictions from the deletion of one or more TFs at the genome scale. For complete details on the use and execution of this protocol, please refer to Niu et al. (2021).


Subject(s)
Escherichia coli , Gene Regulatory Networks , Bayes Theorem , Escherichia coli/genetics , Gene Expression Regulation , Saccharomyces cerevisiae/genetics , Transcription Factors/genetics
8.
iScience ; 24(11): 103218, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34761179

ABSTRACT

There has been extensive research in predictive modeling of genome-scale metabolic reaction networks. Living systems involve complex stochastic processes arising from interactions among different biomolecules. For more accurate and robust prediction of target metabolic behavior under different conditions, not only metabolic reactions but also the genetic regulatory relationships involving transcription factors (TFs) affecting these metabolic reactions should be modeled. We have developed a modeling and simulation pipeline enabling the analysis of Transcription Regulation Integrated with Metabolic Regulation: TRIMER. TRIMER utilizes a Bayesian network (BN) inferred from transcriptomes to model the transcription factor regulatory network. TRIMER then infers the probabilities of the gene states relevant to the metabolism of interest, and predicts the metabolic fluxes and their changes that result from the deletion of one or more transcription factors at the genome scale. We demonstrate TRIMER's applicability to both simulated and experimental data and provide performance comparison with other existing approaches.

9.
Front Plant Sci ; 12: 698912, 2021.
Article in English | MEDLINE | ID: mdl-34239533

ABSTRACT

Bacteria release a wide range of volatile compounds that play important roles in intermicrobial and interkingdom communication. Volatile metabolites emitted by rhizobacteria can promote plant growth and increase plant resistance to both biotic and abiotic stresses. Rhizobia establish beneficial nitrogen-fixing symbiosis with legume plants in a process starting with a chemical dialog in the rhizosphere involving various diffusible compounds. Despite being one of the most studied plant-interacting microorganisms, very little is known about volatile compounds produced by rhizobia and their biological/ecological role. Evidence indicates that plants can perceive and respond to volatiles emitted by rhizobia. In this perspective, we present recent data that open the possibility that rhizobial volatile compounds have a role in symbiotic interactions with legumes and discuss future directions that could shed light onto this area of investigation.

10.
Vet Anim Sci ; 13: 100185, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34189341

ABSTRACT

Information on performance indices in Paso horses is scarce. Field exercise tests are necessary to recreate the exertion that occurs during training and competition. To describe blood lactate concentrations and heart rates of untrained Colombian Paso horses (CPHs) in response to a field exercise test. A 30-minutes-long standardized field exercise test was carried out on 11 untrained adult CPHs of both sexes. Blood lactate concentration (BLConc) and heart rate (HR) were measured before, during each step of the test, and at recovery. The BLConc and HR were used to calculate the HR at which a BLConc of 4 mmol/L or anaerobic threshold (HRL4) was reached. The HR during the field exercise test increased according to the protocol used. The BLConc during the test was variable and, despite having been increasing like the HR, the distribution of the values in each step of the test was remarkably dispersed. The mean blood lactate clearance (BLClear) percentage was 56.3 ± 16, similar in most animals. The HRL4 was reached at a notably different HR among individuals (132 to 251 bpm). The field exercise test protocol used herein is useful to assess BLConc and HR changes in acute response to exercise in CPHs. It would be useful to evaluate training kinetics with other parameters including cell blood count and muscle enzymes.

11.
Methods Mol Biol ; 2309: 91-103, 2021.
Article in English | MEDLINE | ID: mdl-34028681

ABSTRACT

In the Rhizobium-legume symbiosis, strigolactones (SLs) promote root nodule formation; however, the exact mechanism underlying this positive effect remains unknown. The recent finding that an SL receptor legume mutant shows a wild-type nodulation phenotype suggests that SLs influence the symbiosis by acting on the bacterial partner. In agreement with this, the application of the synthetic SL analog GR24 on the alfalfa symbiont Sinorhizobium (Ensifer) meliloti has been shown to stimulate swarming, a specialized bacterial surface motility, which could influence infection of legumes by Rhizobia. Surface motility assays for many bacteria, and particularly for Rhizobia, are challenging. The establishment of protocols to study bacterial surface motility is key to decipher the role of SLs as rhizosphere cues for rhizobacteria. In this chapter, we describe a set of protocols implemented to study the different types of motility exhibited by S. meliloti.


Subject(s)
Heterocyclic Compounds, 3-Ring/pharmacology , Lactones/pharmacology , Movement/drug effects , Plant Growth Regulators/pharmacology , Plant Root Nodulation/drug effects , Plant Roots/microbiology , Sinorhizobium meliloti/drug effects , Heterocyclic Compounds, 3-Ring/chemical synthesis , Lactones/chemical synthesis , Sinorhizobium meliloti/growth & development , Symbiosis
12.
Front Plant Sci ; 12: 589518, 2021.
Article in English | MEDLINE | ID: mdl-33633757

ABSTRACT

The bulk of plant biomass is comprised of plant cell walls, which are complex polymeric networks, composed of diverse polysaccharides, proteins, polyphenolics, and hydroxyproline-rich glycoproteins (HRGPs). Glycosyltransferases (GTs) work together to synthesize the saccharide components of the plant cell wall. The Arabidopsis thaliana fucosyltransferases (FUTs), AtFUT4, and AtFUT6, are members of the plant-specific GT family 37 (GT37). AtFUT4 and AtFUT6 transfer fucose (Fuc) onto arabinose (Ara) residues of arabinogalactan (AG) proteins (AGPs) and have been postulated to be non-redundant AGP-specific FUTs. AtFUT4 and AtFUT6 were recombinantly expressed in mammalian HEK293 cells and purified for biochemical analysis. We report an updated understanding on the specificities of AtFUT4 and AtFUT6 that are involved in the synthesis of wall localized AGPs. Our findings suggest that they are selective enzymes that can utilize various arabinogalactan (AG)-like and non-AG-like oligosaccharide acceptors, and only require a free, terminal arabinofuranose. We also report with GUS promoter-reporter gene studies that AtFUT4 and AtFUT6 gene expression is sub-localized in different parts of developing A. thaliana roots.

13.
Angew Chem Int Ed Engl ; 59(30): 12493-12498, 2020 07 20.
Article in English | MEDLINE | ID: mdl-32396713

ABSTRACT

Growing plants with modified cell wall compositions is a promising strategy to improve resistance to pathogens, increase biomass digestibility, and tune other important properties. In order to alter biomass architecture, a detailed knowledge of cell wall structure and biosynthesis is a prerequisite. We report here a glycan array-based assay for the high-throughput identification and characterization of plant cell wall biosynthetic glycosyltransferases (GTs). We demonstrate that different heterologously expressed galactosyl-, fucosyl-, and xylosyltransferases can transfer azido-functionalized sugar nucleotide donors to selected synthetic plant cell wall oligosaccharides on the array and that the transferred monosaccharides can be visualized "on chip" by a 1,3-dipolar cycloaddition reaction with an alkynyl-modified dye. The opportunity to simultaneously screen thousands of combinations of putative GTs, nucleotide sugar donors, and oligosaccharide acceptors will dramatically accelerate plant cell wall biosynthesis research.


Subject(s)
Glycosyltransferases/chemistry , Plants/enzymology , Polysaccharides/analysis , Cell Wall/chemistry
14.
Microorganisms ; 8(4)2020 Mar 26.
Article in English | MEDLINE | ID: mdl-32225039

ABSTRACT

FadD is an acyl-coenzyme A (CoA) synthetase specific for long-chain fatty acids (LCFA). Strains mutated in fadD cannot produce acyl-CoA and thus cannot grow on exogenous LCFA as the sole carbon source. Mutants in the fadD (smc02162) of Sinorhizobium meliloti are unable to grow on oleate as the sole carbon source and present an increased surface motility and accumulation of free fatty acids at the entry of the stationary phase of growth. In this study, we found that constitutive expression of the closest FadD homologues of S. meliloti, encoded by sma0150 and smb20650, could not revert any of the mutant phenotypes. In contrast, the expression of Escherichia coli fadD could restore the same functions as S. meliloti fadD. Previously, we demonstrated that FadD is required for the degradation of endogenous fatty acids released from membrane lipids. Here, we show that absence of a functional fadD provokes a significant loss of viability in cultures of E. coli and of S. meliloti in the stationary phase, demonstrating a crucial role of fatty acid degradation in survival capacity.

15.
Genes (Basel) ; 9(5)2018 May 18.
Article in English | MEDLINE | ID: mdl-29783703

ABSTRACT

Soil-dwelling bacteria collectively referred to as rhizobia synthesize and perceive N-acyl-homoserine lactone (AHL) signals to regulate gene expression in a population density-dependent manner. AHL-mediated signaling in these bacteria regulates several functions which are important for the establishment of nitrogen-fixing symbiosis with legume plants. Moreover, rhizobial AHL act as interkingdom signals triggering plant responses that impact the plant-bacteria interaction. Both the regulatory mechanisms that control AHL synthesis in rhizobia and the set of bacterial genes and associated traits under quorum sensing (QS) control vary greatly among the rhizobial species. In this article, we focus on the well-known QS system of the alfalfa symbiont Sinorhizobium(Ensifer)meliloti. Bacterial genes, environmental factors and transcriptional and posttranscriptional regulatory mechanisms that control AHL production in this Rhizobium, as well as the effects of the signaling molecule on bacterial phenotypes and plant responses will be reviewed. Current knowledge of S. meliloti QS will be compared with that of other rhizobia. Finally, participation of the legume host in QS by interfering with rhizobial AHL perception through the production of molecular mimics will also be addressed.

16.
Environ Microbiol ; 20(6): 2049-2065, 2018 06.
Article in English | MEDLINE | ID: mdl-29488306

ABSTRACT

Surface motility and biofilm formation are behaviours which enable bacteria to infect their hosts and are controlled by different chemical signals. In the plant symbiotic alpha-proteobacterium Sinorhizobium meliloti, the lack of long-chain fatty acyl-coenzyme A synthetase activity (FadD) leads to increased surface motility, defects in biofilm development and impaired root colonization. In this study, analyses of lipid extracts and volatiles revealed that a fadD mutant accumulates 2-tridecanone (2-TDC), a methylketone (MK) known as a natural insecticide. Application of pure 2-TDC to the wild-type strain phenocopies the free-living and symbiotic behaviours of the fadD mutant. Structural features of the MK determine its ability to promote S. meliloti surface translocation, which is mainly mediated by a flagella-independent motility. Transcriptomic analyses showed that 2-TDC induces differential expression of iron uptake, redox and stress-related genes. Interestingly, this MK also influences surface motility and impairs biofilm formation in plant and animal pathogenic bacteria. Moreover, 2-TDC not only hampers alfalfa nodulation but also the development of tomato bacterial speck disease. This work assigns a new role to 2-TDC as an infochemical that affects important bacterial traits and hampers plant-bacteria interactions by interfering with microbial colonization of plant tissues.


Subject(s)
Bacterial Proteins/metabolism , Ketones/metabolism , Ketones/pharmacology , Medicago sativa/microbiology , Sinorhizobium meliloti/drug effects , Sinorhizobium meliloti/metabolism , Bacterial Proteins/genetics , Biofilms/drug effects , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Mutation , Phenotype , Sinorhizobium meliloti/genetics , Symbiosis
17.
Mol Plant Microbe Interact ; 30(7): 566-577, 2017 07.
Article in English | MEDLINE | ID: mdl-28398840

ABSTRACT

Sinorhizobium meliloti can translocate over surfaces. However, little is known about the regulatory mechanisms that control this trait and its relevance for establishing symbiosis with alfalfa plants. To gain insights into this field, we isolated Tn5 mutants of S. meliloti GR4 with impaired surface motility. In mutant strain GRS577, the transposon interrupted the ntrY gene encoding the sensor kinase of the NtrY/NtrX two-component regulatory system. GRS577 is impaired in flagella synthesis and overproduces succinoglycan, which is responsible for increased biofilm formation. The mutant also shows altered cell morphology and higher susceptibility to salt stress. GRS577 induces nitrogen-fixing nodules in alfalfa but exhibits decreased competitive nodulation. Complementation experiments indicate that both ntrY and ntrX account for all the phenotypes displayed by the ntrY::Tn5 mutant. Ectopic overexpression of VisNR, the motility master regulator, was sufficient to rescue motility and competitive nodulation of the transposant. A transcriptome profiling of GRS577 confirmed differential expression of exo and flagellar genes, and led to the demonstration that NtrY/NtrX allows for optimal expression of denitrification and nifA genes under microoxic conditions in response to nitrogen compounds. This study extends our knowledge of the complex role played by NtrY/NtrX in S. meliloti.


Subject(s)
Bacterial Proteins/genetics , Nitrogen/metabolism , Polysaccharides, Bacterial/biosynthesis , Sinorhizobium meliloti/genetics , Bacterial Proteins/metabolism , Biofilms , DNA Transposable Elements/genetics , Flagella/genetics , Flagella/physiology , Gene Expression Profiling/methods , Gene Expression Regulation, Bacterial , Host-Pathogen Interactions , Medicago sativa/microbiology , Mutagenesis, Insertional , Nitrogen Fixation/genetics , Plant Roots/microbiology , Sinorhizobium meliloti/metabolism , Sinorhizobium meliloti/physiology , Symbiosis
18.
Mol Plant Microbe Interact ; 29(9): 700-712, 2016 09.
Article in English | MEDLINE | ID: mdl-27482821

ABSTRACT

Sinorhizobium fredii HH103 is a rhizobial strain showing a broad host range of nodulation. In addition to the induction of bacterial nodulation genes, transition from a free-living to a symbiotic state requires complex genetic expression changes with the participation of global regulators. We have analyzed the role of the zinc-finger transcriptional regulator MucR1 from S. fredii HH103 under both free-living conditions and symbiosis with two HH103 host plants, Glycine max and Lotus burttii. Inactivation of HH103 mucR1 led to a severe decrease in exopolysaccharide (EPS) biosynthesis but enhanced production of external cyclic glucans (CG). This mutant also showed increased cell aggregation capacity as well as a drastic reduction in nitrogen-fixation capacity with G. max and L. burttii. However, in these two legumes, the number of nodules induced by the mucR1 mutant was significantly increased and decreased, respectively, with respect to the wild-type strain, indicating that MucR1 can differently affect nodulation depending on the host plant. RNA-Seq analysis carried out in the absence and the presence of flavonoids showed that MucR1 controls the expression of hundreds of genes (including some related to EPS production and CG transport), some of them being related to the nod regulon.


Subject(s)
Bacterial Proteins/metabolism , Glycine max/microbiology , Lotus/microbiology , Regulon/genetics , Sinorhizobium fredii/physiology , Symbiosis , Bacterial Proteins/genetics , Flavonoids/metabolism , Nitrogen Fixation , Plant Root Nodulation , Sequence Analysis, RNA , Sinorhizobium fredii/genetics
19.
Plant Sci ; 245: 119-27, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26940496

ABSTRACT

Strigolactones (SLs) are multifunctional molecules acting as modulators of plant responses under nutrient deficient conditions. One of the roles of SLs is to promote beneficial association with arbuscular mycorrhizal (AM) fungi belowground under such stress conditions, mainly phosphorus shortage. Recently, a role of SLs in the Rhizobium-legume symbiosis has been also described. While SLs' function in AM symbiosis is well established, their role in the Rhizobium-legume interaction is still emerging. Recently, SLs have been suggested to stimulate surface motility of rhizobia, opening the possibility that they could also act as molecular cues. The possible effect of SLs in the motility in the alfalfa symbiont Sinorhizobium meliloti was investigated, showing that the synthetic SL analogue GR24 stimulates swarming motility in S. meliloti in a dose-dependent manner. On the other hand, it is known that SL production is regulated by nutrient deficient conditions and by AM symbiosis. Using the model alfalfa-S. meliloti, the impact of phosphorus and nitrogen deficiency, as well as of nodulation on SL production was also assessed. The results showed that phosphorus starvation promoted SL biosynthesis, which was abolished by nitrogen deficiency. In addition, a negative effect of nodulation on SL levels was detected, suggesting a conserved mechanism of SL regulation upon symbiosis establishment.


Subject(s)
Down-Regulation/drug effects , Heterocyclic Compounds, 3-Ring/pharmacology , Lactones/pharmacology , Medicago sativa/microbiology , Plant Root Nodulation/drug effects , Sinorhizobium meliloti/physiology , Symbiosis/drug effects , Flagellin/genetics , Gene Expression Regulation, Bacterial/drug effects , Movement/drug effects , Nitrogen/deficiency , Phosphorus/deficiency , Plankton/drug effects , Plankton/metabolism , Plant Root Nodulation/genetics , Plant Roots/drug effects , Plant Roots/microbiology , Sinorhizobium meliloti/drug effects , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/growth & development , Symbiosis/genetics
20.
Hist Psychol ; 19(2): 154-168, 2016 May.
Article in English | MEDLINE | ID: mdl-26914742

ABSTRACT

Since the university education of psychologists began in Spain in 1954, the history of psychology course has been included in the curriculum. In the first few years, only half of the curricula offered the course. From 1973 to 2007, the universities' organization and regulation underwent successive reforms that involved changes in the curricula, decreeing specific national guidelines for each degree and establishing a minimum set of common required courses, called core courses, including the history of psychology. In 2007, the European Higher Education Area was set up, transforming the 5-year bachelor's degrees into 4-year degrees and eliminating the required guidelines, with each university being able to define the content of their curricula. The Dean's Conference for Psychology agreed on some recommendations related to core courses, which continued to include the history of psychology and were adopted by the majority of the universities. In 2015, the government established a new national regulation that makes it possible for each university to voluntarily reduce the length of the bachelor's degree to 3 years. Some psychology historians believe that this hypothetical reduction in the length of the degree, along with the already existing general tendency to prioritize applied or practical courses over basic or fundamental ones, could produce an appropriate scenario for the disappearance of the history of psychology course in some universities.


Subject(s)
Curriculum/trends , Psychology/education , Psychology/history , Universities/history , History, 20th Century , History, 21st Century , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...