Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Anim Genet ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742646

ABSTRACT

Split paw pad disease is a scarcely defined phenotype characterized by skin lesions on the paw pads of dogs. We studied a family of German Shepherd dogs, in which four dogs developed intermittent paw pad lesions and lameness. The paw pads of two of the affected dogs were biopsied and demonstrated cleft formation in the stratum spinosum and stratum corneum, the outermost layers of the epidermis. Whole genome sequencing data from an affected dog revealed a private heterozygous 18 bp in frame deletion in the KRT5 gene. The deletion NM_001346035.1:c.988_1005del or NP_001332964.1:p.(Asn330_Asp335del) is predicted to lead to a loss of six amino acids in the L12 linker domain of the encoded keratin 5. KRT5 variants in human patients lead to various subtypes of epidermolysis bullosa simplex (EBS). Localized EBS is the mildest of the KRT5-related human diseases and may be caused by variants affecting the L12 linker domain of keratin 5. We therefore think that the detected KRT5 deletion in dogs represents a candidate causal variant for the observed skin lesions in dogs. However, while the clinical phenotype of KRT5-mutant dogs of this study closely resembles human patients with localized EBS, there are differences in the histopathology. EBS is defined by cleft formation within the basal layer of the epidermis while the cleft formation in the dogs described herein occurred in the outermost layers, a hallmark of split paw pad disease. Our study provides a basis for further studies into the exact relation of split paw pad disease and EBS.

2.
Animals (Basel) ; 14(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38612342

ABSTRACT

Soft tissue tumors/sarcomas (STSs) in felines, encompassing a variety of mesenchymal tumors with similar histomorphological features, present diagnostic challenges due to their diverse cellular origins and the overlap with other tumor types such as feline sarcoid. This study aimed to delineate the clinical, histomorphological, and immunohistochemical characteristics of 34 feline facial spindle cell tumors affecting 29 cats, including testing for bovine papillomavirus type 14 (BPV14), the virus causing feline sarcoids. Only five out of 12 tumors previously diagnosed as feline sarcoids based on histomorphology were confirmed by PCR for BPV14, underscoring the importance of comprehensive diagnostic approaches to accurately distinguish between STSs and feline sarcoids. This study shows that most facial spindle cell tumors were compatible with peripheral nerve sheath tumors (PNSTs) based on positive immunohistochemical staining for Sox10 and other immunohistochemical markers such as GFAP, NSE, and S100. Some of these tumors displayed as multiple independent masses on the face or as erosive and ulcerative lesions without obvious mass formation, an atypical presentation and an important highlight for general practitioners, dermatologists, and oncologists. This study also describes periadnexal whorling of neoplastic cells as a novel histomorphologic finding in feline facial PNSTs and emphasizes Sox10 as a useful complementary immunohistochemical marker for the diagnosis of facial PNST in cats, providing valuable insights for veterinary pathologists.

3.
Heliyon ; 10(6): e27601, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38545219

ABSTRACT

Despite the increasingly widespread clinical impact of adenovirus (HAdV) infections in healthy individuals and the associated high morbidity in immunosuppressed patients, particularly among the paediatric population, a specific treatment for this virus has yet to be developed. In this study, we report the anti-HAdV activity of sub-micromolar concentrations of four heteroleptic (C^S)-cycloaurated complexes bearing a single thiophosphinamide [Au(dpta)Cl2, Au(dpta)(mrdtc), and Au(dpta)(dedtc)] or thiophosphonamide [Au(bpta)(dedtc)] chelating ligand and a dithiocarbamate moiety. In addition to their low cytotoxicity, the findings of mechanistic assays revealed that these molecules have antiviral activity by targeting stages of the viral replication cycle subsequent to DNA replication. Additionally, all four compounds showed a significant inhibition of human cytomegalovirus (HCMV) DNA replication, thereby providing evidence for potential broad-spectrum antiviral activity.

5.
Sci Total Environ ; 912: 168752, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-37992831

ABSTRACT

Maërl habitats are composed of coralline red algae species that can live freely rolling on the seabed and forming nodules, the so-called rhodoliths, or incrusted forming coralligenous habitats. Maërl habitats are generally distributed in the Mediterranean at a depth of between 30 m and 70 m and are considered one of the most emblematic Mediterranean seabeds. In the present study, the complex structure of maërl habitats was investigated to i) characterise the relief features and classify the different sediments, ii) to estimate the abundance of the coralline red algae (both rhodoliths and encrusting ones) and iii) to analyse the biodiversity of the species inhabiting the habitat. Data were obtained from an approximately 11 km-long transect, using non-intrusive sampling methods, integrating information from video images collected using the Remotely Operated Vehicle LIROPUS (IEO_CSIC), and multibeam bathymetry and backscatter data. Video images were used to reconstruct (using GIS) the habitat structure and characteristics. Throughout the transect, a strong relationship between habitat characteristics and the effect of trawling activity and the geomorphology of the studied area was observed. The closed area to fishing activity showed a high abundance of rhodoliths in well-structured megaripples reliefs. Contrarily, the areas affected by fishing showed an important destructuring of the relief with a low density of rhodoliths. Last, the muddy bottoms showed areas with no characteristic features and no rhodoliths. All this information has allowed to reconstruct the maërl habitat in the Blanes continental shelf (NW Mediterranean) and analyse the fragmentation of the assemblages seen in the video to assess its good environmental status (GES), and finally to identify the level of ecological integrity of this vulnerable habitat.


Subject(s)
Ecosystem , Rhodophyta , Biodiversity , Hunting , Mediterranean Sea
6.
Genes (Basel) ; 14(10)2023 09 22.
Article in English | MEDLINE | ID: mdl-37895184

ABSTRACT

Epidermolysis bullosa (EB), characterized by defective adhesion of the epidermis to the dermis, is a heterogeneous disease with many subtypes in human patients and domestic animals. We investigated two unrelated cats with recurring erosions and ulcers on ear pinnae, oral mucosa, and paw pads that were suggestive of EB. Histopathology confirmed the diagnosis of EB in both cats. Case 1 was severe and had to be euthanized at 5 months of age. Case 2 had a milder course and was alive at 11 years of age at the time of writing. Whole genome sequencing of both affected cats revealed independent homozygous variants in COL17A1 encoding the collagen type XVII alpha 1 chain. Loss of function variants in COL17A1 lead to junctional epidermolysis bullosa (JEB) in human patients. The identified splice site variant in case 1, c.3019+1del, was predicted to lead to a complete deficiency in collagen type XVII. Case 2 had a splice region variant, c.769+5G>A. Assessment of the functional impact of this variant on the transcript level demonstrated partial aberrant splicing with residual expression of wildtype transcript. Thus, the molecular analyses provided a plausible explanation of the difference in clinical severity between the two cases and allowed the refinement of the diagnosis in the affected cats to JEB. This study highlights the complexity of EB in animals and contributes to a better understanding of the genotype-phenotype correlation in COL17A1-related JEB.


Subject(s)
Epidermolysis Bullosa, Junctional , Humans , Cats/genetics , Animals , Epidermolysis Bullosa, Junctional/genetics , Epidermolysis Bullosa, Junctional/veterinary , Non-Fibrillar Collagens/genetics , Non-Fibrillar Collagens/metabolism , Autoantigens/genetics , Skin/metabolism , Collagen Type XVII
8.
Front Microbiol ; 14: 1198473, 2023.
Article in English | MEDLINE | ID: mdl-37333656

ABSTRACT

Introduction: Antimicrobial resistance is a pressing global concern that has led to the search for new antibacterial agents with novel targets or non-traditional approaches. Recently, organogold compounds have emerged as a promising class of antibacterial agents. In this study, we present and characterize a (C^S)-cyclometallated Au(III) dithiocarbamate complex as a potential drug candidate. Methods and results: The Au(III) complex was found to be stable in the presence of effective biological reductants, and showed potent antibacterial and antibiofilm activity against a wide range of multidrug-resistant strains, particularly gram-positive strains, and gram-negative strains when used in combination with a permeabilizing antibiotic. No resistant mutants were detected after exposing bacterial cultures to strong selective pressure, indicating that the complex may have a low propensity for resistance development. Mechanistic studies indicate that the Au(III) complex exerts its antibacterial activity through a multimodal mechanism of action. Ultrastructural membrane damage and rapid bacterial uptake suggest direct interactions with the bacterial membrane, while transcriptomic analysis identified altered pathways related to energy metabolism and membrane stability including enzymes of the TCA cycle and fatty acid biosynthesis. Enzymatic studies further revealed a strong reversible inhibition of the bacterial thioredoxin reductase. Importantly, the Au(III) complex demonstrated low cytotoxicity at therapeutic concentrations in mammalian cell lines, and showed no acute in vivo toxicity in mice at the doses tested, with no signs of organ toxicity. Discussion: Overall, these findings highlight the potential of the Au(III)-dithiocarbamate scaffold as a basis for developing novel antimicrobial agents, given its potent antibacterial activity, synergy, redox stability, inability to produce resistant mutants, low toxicity to mammalian cells both in vitro and in vivo, and non-conventional mechanism of action.

9.
Antibiotics (Basel) ; 12(3)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36978318

ABSTRACT

The increasing number of infections caused by antibiotic-resistant bacterial pathogens over the last few decades has become a critical global health problem, the scale of which has led to it being named a "silent pandemic" [...].

10.
J Comp Pathol ; 201: 114-117, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36791602

ABSTRACT

Meningioma is the most frequent intracranial neoplasm in cats. Here we describe the first case of chordoid meningioma (CM), a rare grade II meningioma subtype, in a 5.5-year-old European wildcat (Felis silvestris) from a Swiss zoo. The wildcat was found dead after a clinical history of neurological signs and clinical suspicion of a carcinoma in the right external ear canal with concurrent chronic otitis. Post-mortem examination revealed a large intracranial, extra-axial and intradural neoplasm that invaded into the right ear canal and had histological features compatible with CM, which has been only reported in humans and dogs. Neoplastic cells expressed vimentin but were negative for glial fibrillary acidic protein, S100 and pancytokeratin. Immunohistochemistry revealed epithelial membrane antigen (EMA) expression in neoplastic cells. To the best of our knowledge, we provide the first evidence of EMA expression in feline meningioma.


Subject(s)
Cat Diseases , Dog Diseases , Felis , Meningeal Neoplasms , Meningioma , Cats , Animals , Humans , Dogs , Meningioma/veterinary , Meningeal Neoplasms/veterinary , Mucin-1/metabolism , Immunohistochemistry , Felis/metabolism
11.
J Phycol ; 59(2): 356-369, 2023 04.
Article in English | MEDLINE | ID: mdl-36690599

ABSTRACT

Dunaliella tertiolecta RCC6 was cultivated indoors in glass bubble column photobioreactors operated under batch and semi-continuous regimens and using two different conditions of light and temperature. Biomass was harvested by centrifugation, frozen, and then lyophilized. The soluble material was obtained by sequential extraction of the lyophilized biomass with solvents with a gradient of polarity (hexane, ethyl acetate, and methanol) and its metabolic composition was investigated through nuclear magnetic resonance (NMR) spectroscopy. The effect of light on chlorophyll biosynthesis was clearly shown through the relative intensities of the 1 H NMR signals due to pheophytins. The highest signal intensity was observed for the biomasses obtained at lower light intensity, resulting in a lower light availability per cell. Under high temperature and light conditions, the 1 H NMR spectra of the hexane extracts showed an incipient accumulation of triacylglycerols. In these conditions and under semi-continuous regimen, an enhancement of ß-carotene and sterols production was observed. The antibacterial and antibiofilm activities of the extracts were also tested. Antibacterial activity was not detected, regardless of culture conditions. In contrast, the minimal biofilm inhibitory concentrations (MBICs) against Escherichia coli for the hexane extract obtained under semi-continuous regimen using high temperature and irradiance conditions was promising.


Subject(s)
Chlorophyceae , Hexanes , Anti-Bacterial Agents/pharmacology , Biofilms
12.
Antibiotics (Basel) ; 11(12)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36551386

ABSTRACT

The emergence and spread of multidrug-resistant bacteria are a global concern. The lack of new antibiotics in the pipeline points to the need for developing new strategies. In this sense, gold(III) complexes (G3Cs) could be a promising alternative due to their recently described antibacterial activity. The aim of this study was to evaluate the antimicrobial activity of G3Cs alone and in combination with colistin against pathogenic bacteria from veterinary sources. Minimal inhibitory concentration (MIC) values were determined by broth microdilution and compared with clinically relevant antibiotics. Antibiofilm activity was determined by crystal violet staining. Combinations of selected G3Cs with colistin and cytotoxicity in commercial human cell lines were evaluated. Four and seven G3Cs showed antibacterial effect against Gram-negative and Gram-positive strains, respectively, with this activity being higher among Gram-positive strains. The G3Cs showed antibiofilm activity against Gram-negative species at concentrations similar or one to four folds higher than the corresponding MICs. Combination of G3Cs with colistin showed a potential synergistic antibacterial effect reducing concentrations and toxicity of both agents. The antimicrobial and antibiofilm activity, the synergistic effect when combined with colistin and the in vitro toxicity suggest that G3Cs would provide a new therapeutic alternative against multidrug-resistant bacteria from veterinary origin.

13.
Front Microbiol ; 13: 950855, 2022.
Article in English | MEDLINE | ID: mdl-36246241

ABSTRACT

Chlorosphaerolactylate B, a newly discovered antimicrobial halometabolite from the cyanobacterium Sphaerospermopsis sp. LEGE 00249 has been synthesized in three steps by using 12-bromododecanoic acid as starting material. A total of 0.5 g was produced for in vitro and in vivo antimicrobial efficacy testing. In vitro, the minimal inhibitory concentration (MIC) was estimated to be 256 mg/L for Staphylococcus aureus, while the minimal biofilm inhibitory concentration (MBIC) was estimated to be 74 mg/L. The in vivo study utilized a porcine model of implant-associated osteomyelitis. In total, 12 female pigs were allocated into 3 groups based on inoculum (n = 4 in each group). An implant cavity (IC) was drilled in the right tibia and followed by inoculation and insertion of a steel implant. All pigs were inoculated with 10 µL containing either: 11.79 mg synthetic Chlorosphaerolactylate B + 104 CFU of S. aureus (Group A), 104 CFU of S. aureus (Group B), or pure saline (Group C), respectively. Pigs were euthanized five days after inoculation. All Group B animals showed macroscopic and microscopic signs of bone infection and both tissue and implant harbored S. aureus bacteria (mean CFU on implants = 1.9 × 105). In contrast, S. aureus could not be isolated from animals inoculated with saline. In Group A, two animals had a low number of S. aureus (CFU = 6.7 × 101 and 3.8 × 101, respectively) on the implants, otherwise all Group A animals were similar to Group C animals. In conclusion, synthetic Chlorosphaerolactylate B holds potential to be a novel antimicrobial and antibiofilm compound.

14.
J Biomater Appl ; 37(5): 767-772, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35924755

ABSTRACT

Cerclage wiring may be used for fracture fixation or osteotomy stabilization in revision arthroplasty. There is a lack of evidence regarding the potential risk of bacterial colonization for the different types of cerclages. The objective of our research is to study the adhesion and biofilm formation of S. epidermidis, S. aureus, and P. aeruginosa on two different cerclage cable models, comparing a polymer cable and a stainless steel metal cable. A two-cm cerclage piece of each material was submerged in 2 mL of tryptic soy broth (TSB) inoculated with 10 µL of a 0.5 McFarland bacterial culture, and incubated at 37°C during 2 h for adhesion and 48 h for biofilm formation. The cerclages were washed with 1xPBS and sonicated in a new culture medium. Aliquots of several dilutions of each sonicated culture were spread in TSB agar and incubated at 37°C for 24 h. The number of colonies was counted. The colony-forming units per ml (CFU/mL) and the percentage of reduction were calculated. Experiments were triplicated. For P. aeruginosa, a statistically significant reduction in biofilm formation was found on the polymer cerclage cable, compared to the metal cerclage cable. Reductions of 59% and 88%, after 2 h and 48 h, respectively, were observed. For S. epidermis and S. aureus, there was a trend towards lower bacterial adhesion and biofilm formation for the polymer cerclage cable. In summary, these results demonstrate that the braided polymer cerclage cable may be less prone to bacterial adherence and biofilm formation compared to the braided metal cerclage cable.


Subject(s)
Staphylococcus aureus , Staphylococcus epidermidis , Bacterial Adhesion , Stainless Steel , Pseudomonas aeruginosa , Biofilms , Polymers
15.
Microorganisms ; 10(6)2022 May 26.
Article in English | MEDLINE | ID: mdl-35744621

ABSTRACT

Escherichia coli is one of the species most frequently involved in biofilm-related diseases, being especially important in urinary tract infections, causing relapses or chronic infections. Compared to their planktonic analogues, biofilms confer to the bacteria the capacity to be up to 1000-fold more resistant to antibiotics and to evade the action of the host's immune system. For this reason, biofilm-related infections are very difficult to treat. To develop new strategies against biofilms, it is important to know the mechanisms involved in their formation. In this review, the different steps of biofilm formation in E. coli, the mechanisms of tolerance to antimicrobials and new compounds and strategies to combat biofilms are discussed.

16.
Genes (Basel) ; 13(5)2022 04 29.
Article in English | MEDLINE | ID: mdl-35627182

ABSTRACT

We investigated four cats with similar clinical skin-related signs strongly suggestive of Ehlers-Danlos syndrome (EDS). Cases no. 1 and 4 were unrelated and the remaining two cases, no. 2 and 3, were reportedly siblings. Histopathological changes were characterized by severely altered dermal collagen fibers. Transmission electron microscopy in one case demonstrated abnormalities in the collagen fibril organization and structure. The genomes of the two unrelated affected cats and one of the affected siblings were sequenced and individually compared to 54 feline control genomes. We searched for private protein changing variants in known human EDS candidate genes and identified three independent heterozygous COL5A1 variants. COL5A1 is a well-characterized candidate gene for classical EDS. It encodes the proα1 chain of type V collagen, which is needed for correct collagen fibril formation and the integrity of the skin. The identified variants in COL5A1 are c.112_118+15del or r.spl?, c.3514A>T or p.(Lys1172*), and c.3066del or p.(Gly1023Valfs*50) for cases no. 1, 2&3, and 4, respectively. They presumably all lead to nonsense-mediated mRNA decay, which results in haploinsufficiency of COL5A1 and causes the alterations of the connective tissue. The whole genome sequencing approach used in this study enables a refinement of the diagnosis for the affected cats as classical EDS. It further illustrates the potential of such experiments as a precision medicine approach in animals with inherited diseases.


Subject(s)
Ehlers-Danlos Syndrome , Animals , Cats/genetics , Collagen/genetics , Collagen Type V/genetics , Ehlers-Danlos Syndrome/genetics , Ehlers-Danlos Syndrome/veterinary , Exons
17.
Front Microbiol ; 13: 846959, 2022.
Article in English | MEDLINE | ID: mdl-35401486

ABSTRACT

Antimicrobial resistance is considered one of the three most important health problems by the World Health Organization. The emergence and spread of an increasing number of antimicrobial-resistant microorganisms make this a worldwide problem. Antibiotic-resistant bacteria are estimated to be the cause of 33,000 deaths in Europe and 700,000 worldwide each year. It is estimated that in 2050 bacterial infections will cause 10 million deaths across the globe. This problem is concomitant with a decrease in the investment and, therefore, the discovery and marketing of new antibiotics. Recently, there have been tremendous efforts to find new effective antimicrobial agents. Gold complexes, with their broad-spectrum antimicrobial activities and unique modes of action, are particularly relevant among several families of derivatives that have been investigated. This mini review revises the role of gold-derived molecules as antibacterial agents.

18.
Front Microbiol ; 13: 815622, 2022.
Article in English | MEDLINE | ID: mdl-35308343

ABSTRACT

The worldwide emergence and spread of infections caused by multidrug-resistant bacteria endangers the efficacy of current antibiotics in the clinical setting. The lack of new antibiotics in the pipeline points to the need of developing new strategies. Recently, gold-based drugs are being repurposed for antibacterial applications. Among them, gold(III) complexes have received increasing attention as metal-based anticancer agents. However, reports on their antibacterial activity are scarce due to stability issues. The present work demonstrates the antibacterial activity of the gold(III) complex 2 stabilized as C∧S-cycloaurated containing a diphenylphosphinothioic amide moiety, showing minimum inhibitory concentration (MIC) values that ranged from 4 to 8 and from 16 to 32 mg/L among Gram-positive and Gram-negative multidrug-resistant (MDR) pathogens, respectively. Complex 2 has a biofilm inhibitory activity of only two to four times than its MIC. We also describe for the first time a potent antibacterial synergistic effect of a gold(III) complex combined with colistin, showing a bactericidal effect in less than 2 h; confirming the role of the outer membrane as a permeability barrier. Complex 2 shows a low rate of internalization in Staphylococcus aureus and Acinetobacter baumannii; it does not interact with replication enzymes or efflux pumps, causes ultrastructural damages in both membrane and cytoplasmic levels, and permeabilizes the bacterial membrane. Unlike control antibiotics, complex 2 did not generate resistant mutants in 30-day sequential cultures. We detected lower cytotoxicity in a non-tumoral THLE-2 cell line (IC50 = 25.5 µM) and no acute toxicity signs in vivo after an i.v. 1-mg/kg dose. The characterization presented here reassures the potential of complex 2 as a new chemical class of antimicrobial agents.

20.
J Infect Dis ; 225(8): 1452-1459, 2022 04 19.
Article in English | MEDLINE | ID: mdl-33668071

ABSTRACT

BACKGROUND: The optimal method for delivering phages in the context of ventilator-associated pneumonia (VAP) is unknown. In the current study, we assessed the utility of aerosolized phages (aerophages) for experimental methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. METHODS: Rats were ventilated for 4 hours before induction of pneumonia. Animals received one of the following: (1) aerophages; (2) intravenous (IV) phages; (3) a combination of IV and aerophages; (4) IV linezolid; or (5) a combination of IV linezolid and aerophages. Phages were administered at 2, 12, 24, 48, and 72 hours, and linezolid was administered at 2, 12, 24, 36, 48, 60, and 72 hours. The primary outcome was survival at 96 hours. Secondary outcomes were bacterial and phage counts in tissues and histopathological scoring of the lungs. RESULTS: Aerophages and IV phages each rescued 50% of animals from severe MRSA pneumonia (P < .01 compared with placebo controls). The combination of aerophages and IV phages rescued 91% of animals, which was higher than either monotherapy (P < .05). Standard-of-care antibiotic linezolid rescued 38% of animals. However, linezolid and aerophages did not synergize in this setting (55% survival). CONCLUSIONS: Aerosolized phage therapy showed potential for the treatment of MRSA pneumonia in an experimental animal model and warrants further investigation for application in humans.


Subject(s)
Bacteriophages , Methicillin-Resistant Staphylococcus aureus , Pneumonia, Staphylococcal , Pneumonia, Ventilator-Associated , Animals , Linezolid/therapeutic use , Pneumonia, Staphylococcal/microbiology , Pneumonia, Ventilator-Associated/drug therapy , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...