Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(12): e0262180, 2021.
Article in English | MEDLINE | ID: mdl-34972198

ABSTRACT

Trichoderma atroviride (Ascomycota, Sordariomycetes) is a well-known mycoparasite applied for protecting plants against fungal pathogens. Its mycoparasitic activity involves processes shared with plant and human pathogenic fungi such as the production of cell wall degrading enzymes and secondary metabolites and is tightly regulated by environmental cues. In eukaryotes, the conserved Target of Rapamycin (TOR) kinase serves as a central regulator of cellular growth in response to nutrient availability. Here we describe how alteration of the activity of TOR1, the single and essential TOR kinase of T. atroviride, by treatment with chemical TOR inhibitors or by genetic manipulation of selected TOR pathway components affected various cellular functions. Loss of TSC1 and TSC2, that are negative regulators of TOR complex 1 (TORC1) in mammalian cells, resulted in altered nitrogen source-dependent growth of T. atroviride, reduced mycoparasitic overgrowth and, in the case of Δtsc1, a diminished production of numerous secondary metabolites. Deletion of the gene encoding the GTPase RHE2, whose mammalian orthologue activates mTORC1, led to rapamycin hypersensitivity and altered secondary metabolism, but had an only minor effect on vegetative growth and mycoparasitic overgrowth. The latter also applied to mutants missing the npr1-1 gene that encodes a fungus-specific kinase known as TOR target in yeast. Genome-wide transcriptome analysis confirmed TOR1 as a regulatory hub that governs T. atroviride metabolism and processes associated to ribosome biogenesis, gene expression and translation. In addition, mycoparasitism-relevant genes encoding terpenoid and polyketide synthases, peptidases, glycoside hydrolases, small secreted cysteine-rich proteins, and G protein coupled receptors emerged as TOR1 targets. Our results provide the first in-depth insights into TOR signaling in a fungal mycoparasite and emphasize its importance in the regulation of processes that critically contribute to the antagonistic activity of T. atroviride.


Subject(s)
Gene Expression Regulation, Fungal , Hypocreales/metabolism , Nitrogen/metabolism , TOR Serine-Threonine Kinases/metabolism , Cell Wall/metabolism , Databases, Genetic , Fungal Proteins/genetics , Gene Deletion , Genetic Complementation Test , Genome, Fungal , Genome-Wide Association Study , Molecular Weight , Mutation , Phenotype , Phosphorylation , Plant Diseases/microbiology , Polyketide Synthases/metabolism , Ribosomal Protein S6/chemistry , Sequence Analysis, RNA , Signal Transduction , Sirolimus/pharmacology , Terpenes/chemistry , Transcriptome
2.
iScience ; 20: 415-433, 2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31622882

ABSTRACT

To adjust cell growth and metabolism according to environmental conditions, the conserved TORC1 signaling network controls autophagy, protein synthesis, and turnover. Here, we dissected the signals controlling phosphorylation and activity of the TORC1-effector kinase Npr1, involved in tuning the plasma membrane permeability to nitrogen sources. By evaluating a role of pH as a signal, we show that, although a transient cytosolic acidification accompanies nitrogen source entry and is correlated to a rapid TORC1-dependent phosphorylation of Npr1, a pH drop is not a prerequisite for TORC1 activation. We show that the Gtr1/Gtr2 and Pib2 regulators of TORC1 both independently and differently contribute to regulate Npr1 phosphorylation and activity. Finally, our data reveal that Npr1 mediates nitrogen-dependent phosphorylation of Pib2, as well as a Pib2-dependent inhibition of TORC1. This work highlights a feedback control loop likely enabling efficient downregulation and faster re-activation of TORC1 in response to a novel stimulating signal.

3.
Structure ; 25(6): 939-944.e3, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28552574

ABSTRACT

Bacterial two-component systems consist of a sensor histidine kinase (HK) and a response regulator (RR). HKs are homodimers that catalyze the autophosphorylation of a histidine residue and the subsequent phosphoryl transfer to its RR partner, triggering an adaptive response. How the HK autokinase and phosphotransferase activities are coordinated remains unclear. Here, we report X-ray structures of the prototypical HK CpxA trapped as a hemi-phosphorylated dimer, and of the receiver domain from the RR partner, CpxR. Our results reveal that the two catalytic reactions can occur simultaneously, one in each protomer of the asymmetric CpxA dimer. Furthermore, the increase of autokinase activity in the presence of phosphotransfer-impaired CpxR put forward the idea of an allosteric switching mechanism, according to which CpxR binding to one CpxA protomer triggers autophosphorylation in the second protomer. The ensuing dynamical model provides a mechanistic explanation of how HKs can efficiently orchestrate two catalytic reactions involving large-scale protein motions.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Protein Kinases/chemistry , Protein Kinases/metabolism , Crystallography, X-Ray , Histidine Kinase/chemistry , Histidine Kinase/metabolism , Models, Molecular , Phosphorylation , Protein Conformation , Protein Multimerization
SELECTION OF CITATIONS
SEARCH DETAIL
...