Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 134: 109244, 2020 08.
Article in English | MEDLINE | ID: mdl-32517928

ABSTRACT

The use of astaxanthin as a food ingredient is limited due to its poor water solubility in aqueous matrices and highly susceptibility to oxidation; hence microencapsulation of this carotenoid is an appropriate technique to increase its stability and functionally. In this study, astaxanthin oleoresin was encapsulated using a food-grade Pickering emulsion to enhance its stability during spray-drying and storage and its bioaccessibility. The oil-in-water (O/W) emulsions were stabilized by protein-based aggregates obtained from a lupin protein-rich cultivar (AluProt-CGNA). The emulsions containing the astaxanthin microencapsulated in its oil phase (core material) were submitted to a spray-drying process at 160 °C and 140 °C. For this, blends of these protein-based aggregates (LP-APs) and maltodextrin (at different ratios) were used as wall material. The emulsion stability, microstructure, powder characteristics, oxidative stability and concentration of astaxanthin, encapsulation efficiency and bioaccessibility after spray-drying were investigated. The results showed that LP-APs exhibit a great potential to perform as stabilizers for Pickering emulsions. The formed O/W emulsions were highly stable against creaming at high concentrations of LP-APs. The results also indicated that spray-drying can be applied to prepare stable astaxanthin emulsions into powders with good oxidative stability. The astaxanthin content in dry emulsions under storage conditions (25 and 45 °C for 4 weeks) was higher in powders containing a higher LP-APs concentration. The encapsulation efficiency was higher than 90% with the emulsion stabilized with 6% of LP-APs. The bioaccessebility of reconstituted astaxanthin powder (with 6% LP-APs) was around 80%.


Subject(s)
Xanthophylls , Emulsions , Particle Size , Powders
2.
Plant Foods Hum Nutr ; 74(4): 508-517, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31630281

ABSTRACT

In recent years, interest in plant-based proteins has been rising due to ethical and sustainability issues. In this context, the production of protein concentrates and isolates from new plant sources have increased enormously because of their nutritional and techno-functional properties. Therefore, this work describes a pilot process for obtaining protein-rich ingredients from a yellow lupin variety (Lupinus luteus) developed by the Agriaquaculture Nutritional Genomic Center (CGNA). A protein alkaline solubilisation followed by isoelectric precipitation was used as a method for obtaining a protein concentrate (LPC) and isolate (LPI) with 75 and 95% protein, respectively. The changes in the protein quality and chemical composition during the protein concentration process from lupin flour were evaluated. Thus, nutritional parameters such as the amino acids (AAs) profile, essential amino acid index (EAAI), chemical score (CS), the protein efficiency ratio (PER), and digestible indispensable amino acid score (DIAAS) were determined to evaluate the nutritional quality of LPC and LPI. The facile and scalable protein isolation method without a defatting process proposed in this study showed a great protein separation efficiency (PSE), while the amino acids profile was not affected during both the concentration as well as the isolation of proteins. In addition, SDS-PAGE showed that both LPC and LPI mainly contained the high-molecular-weight proteins α and ß-conglutins. Both LPC and LPI had a balanced amino acids profile, and arginine was the most predominant amino acid. These results are useful for increasing the use of lupin based-protein ingredients as a potential functional ingredient in the food industry.


Subject(s)
Lupinus , Amino Acids , Nutritive Value , Plant Proteins , Seeds
SELECTION OF CITATIONS
SEARCH DETAIL
...