Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Reprod Immunol ; 88(4): e13597, 2022 10.
Article in English | MEDLINE | ID: mdl-35816185

ABSTRACT

PROBLEM: Antinuclear antibodies (ANA) potentially play a role in the pathogenesis of connective tissue diseases (CTDs); however, they are also detected in healthy individuals. Our understanding of the physiological and pathological origin of ANA is incomplete. Both; female reproductive processes and deficiencies in DNA damage response (DDR) have been independently associated with ANA production. However, the link between these two factors and the presence of ANA is unclear METHOD OF STUDY: A cohort study was conducted on 87 non-pregnant and 51 healthy pregnant women. ANA and the DDR markers X-ray repair cross-complementing 1 (XRCC1) and recombinase (RAD51) were quantified in sera by enzyme-linked immunosorbent assay. Additionally, ANA was detected by indirect immunofluorescence in HEp-2 cells in 1:40 diluted sera during the three phases of the menstrual cycle in non-pregnant women and every trimester in pregnant women RESULTS: The prevalence of ANA+ in healthy women was 26.1%, with no significant differences between pregnant and non-pregnant women. ANA and DDR marker levels did not vary among the three phases of the menstrual cycle or the three trimesters of pregnancy. However, DDR marker levels were higher in pregnant women than in non-pregnant women (p < .001) and were found to be higher in ANA+ women (XRCC1, p = .025; RAD51, p = .006) CONCLUSIONS: The menstrual cycle and pregnancy did not influence the levels of DDR markers or ANA in healthy women; however, the DDR was higher in pregnancy and ANA+ women. The results suggest a potential role of DDR in the pathophysiology of ANA.


Subject(s)
Antibodies, Antinuclear , Menstrual Cycle , Biomarkers , Cohort Studies , DNA Damage , Female , Humans , Pregnancy , Rad51 Recombinase , Recombinases , X-ray Repair Cross Complementing Protein 1
SELECTION OF CITATIONS
SEARCH DETAIL
...