Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomedicine ; 14(1): 1-12, 2018 01.
Article in English | MEDLINE | ID: mdl-28882675

ABSTRACT

Concerns about the bioaccumulation and toxicity of gold nanoparticles inside humans have recently risen. HT-29 and HepG2 cell lines and Wistar rats were exposed to 10, 30 or 60 nm gold nanoparticles to determine their tissue distribution, subcellular location and deleterious effects. Cell viability, ROS production and DNA damage were evaluated in vitro. Lipid peroxidation and protein carbonylation were determined in liver. ICP-MS measurements showed the presence of gold in intestine, kidney, liver, spleen, feces and urine. Subcellular locations of gold nanoparticles were observed in colon cells and liver samples by transmission electron microscopy. Inflammatory markers in liver and biochemical parameters in plasma were measured to assess the inflammatory status and presence of tissue damage. The size of the nanoparticles determined differences in the biodistribution and the excretion route. The smallest nanoparticles showed more deleterious effects, confirmed by their location inside the cell nucleus and the higher DNA damage.


Subject(s)
DNA Damage/drug effects , Gold/pharmacokinetics , Metal Nanoparticles/analysis , Metal Nanoparticles/toxicity , Animals , Cell Survival , Gold/chemistry , HT29 Cells , Hep G2 Cells , Humans , In Vitro Techniques , Kidney/chemistry , Kidney/drug effects , Liver/chemistry , Liver/drug effects , Male , Metal Nanoparticles/chemistry , Rats , Rats, Wistar , Spleen/chemistry , Spleen/drug effects , Tissue Distribution
2.
Anal Chem ; 85(3): 1316-21, 2013 Feb 05.
Article in English | MEDLINE | ID: mdl-23305255

ABSTRACT

The tremendous increase in the use of engineered nanoparticles in daily life has raised concerns about their impact on the environment and in biological systems. Among them, silver-containing material is of high industrial interest and of manifold use in consumer products, mainly because of their antimicrobial activity. Therefore, analytical methods are urgently needed for the reliable determination of Ag nanoparticles and their corresponding Ag(I) species. In this study, we present the development of coupling reversed-phase high-performance liquid chromatography (HPLC) to inductively coupled plasma-mass spectrometry (ICPMS) for the speciation of engineered Ag-containing nanoparticles and Ag(I) species. The method has been designed for the separation/detection of all investigated silver species in a single chromatographic run. For this purpose, the addition of thiosulfate to the mobile phase has been used to elute Ag(I) species from the column without degradation of the other species. The analytical figures of merit show repeatable results for the recoveries (>80%) of both, the Ag nanoparticles and Ag(I) species. The obtained detection limits are in the medium ng·L(-1) range and therefore allow the trace analysis of the sought analytes in real samples. However, the matrix (e.g., fetal bovine serum) showed an impact on the retention behavior of the Ag nanoparticles, so that for size determinations the use of gold nanoparticles as internal size standard is suggested. Finally, the analysis of textile products exemplarily demonstrates the applicability to the analysis of real samples. Besides silver-containing nanoparticles, Ag(I) species can be identified as one of the major species in the extraction solution from sports socks. However, extraction conditions will be the subject of further investigations in the future in order to obtain reliable quantitative data.

SELECTION OF CITATIONS
SEARCH DETAIL
...