Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Daru ; 27(1): 137-148, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30850959

ABSTRACT

We have applied the docking methodology to characterize the binding modes of the divalent metal transporter 1 (DMT1) and the zinc transporter 8 (ZIP8) protein channels with: melatonin, some melatonin metabolites, and a few lead complexes of melatonin and its metabolites, in three different coordination modes (mono-coordinated, bi-coordinated and tri-coordinated). Our results show that bi-coordinated and tri-coordinated lead complexes prefer to bind inside the central region of ZIP8. Moreover, the interaction strength is larger compared with that of the free melatonin and melatonin metabolites. On the other hand, the binding modes with DMT1 of such complexes display lower binding energies, compared with the free melatonin and melatonin metabolites. Our results suggest that ZIP8 plays a major role in the translocation of Pb, bi or tri coordinated, when melatonin metabolites are present. Finally, we have characterized the binding modes responsible for the ZIP8 large affinities, found in bi-coordinated and tri-coordinated lead complexes. Our results show that such interactions are greater, because of an increase of the number of hydrogen bonds, the number and intensity of electrostatic interactions, and the interaction overlay degree in each binding mode. Our results give insight into the importance of the ZIP8 channel on lead transport and a possible elimination mechanism in lead detoxification processes. Graphical abstract .


Subject(s)
Cation Transport Proteins/metabolism , Lead/pharmacology , Melatonin/pharmacology , Transcription Factors/metabolism , Binding Sites , Cation Transport Proteins/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Humans , Lead/chemistry , Melatonin/chemistry , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Protein Binding , Protein Structure, Tertiary , Transcription Factors/chemistry
2.
J Mol Model ; 25(1): 18, 2019 Jan 04.
Article in English | MEDLINE | ID: mdl-30610389

ABSTRACT

Melatonin has been proposed as an alternative treatment to the usage of EDTA for lead intoxication. In this computational paper, since previous work has not systematically studied the complexes that may be formed in the existing and proposed treatments, we study 45 possible complexes that we suggest may be formed between Pb and some essential metals with melatonin, melatonin metabolites, and EDTA, analyzing the stability and viability of these through the Gibbs free energy of complexation (ΔΔG), molecular orbitals, and energy decomposition analysis at the DFT level of theory PBE/TZ2P. Our findings show that most complexes present exergonic energies of reaction, and thus spontaneous complex formation. In addition, we show that the AMK and 3OHM melatonin metabolites possess electronic and thermodynamic properties adequate to act as lead trapping molecules due to the lower Pauli repulsion energies involved in the complexes they form and their large negative values of ΔΔG. Therefore, it is shown that both melatonin and some of its metabolites may be employed in a viable treatment for lead intoxication through formation of stable Pb-complexes. Graphical abstract Metal complexes formed with EDTA, melatonin, and its main metabolites.


Subject(s)
Computational Biology/methods , Coordination Complexes/chemistry , Edetic Acid/chemistry , Melatonin/chemistry , Metals/chemistry , Algorithms , Animals , Binding Sites , Coordination Complexes/metabolism , Edetic Acid/metabolism , Humans , Lead/chemistry , Lead/metabolism , Lead Poisoning/metabolism , Lead Poisoning/prevention & control , Melatonin/metabolism , Metals/metabolism , Models, Molecular , Molecular Structure , Static Electricity , Thermodynamics
3.
Biometals ; 31(5): 859-871, 2018 10.
Article in English | MEDLINE | ID: mdl-30006888

ABSTRACT

Human lead (Pb) exposure induces many adverse health effects, including some related to lead accumulation in organs. Although lead bio-distribution in the body has been described, the molecular mechanism underlying distribution and excretion is not well understood. The transport of essential and toxic metals is principally mediated by proteins. How lead affects the expression of metal transporter proteins in the principal metal excretory organs, i.e., the liver and kidney, is unknown. Considering that co-administration of melatonin and lead reduces the toxic effects of lead and lead levels in the blood in vivo, we examined how lead and co-administration of lead and melatonin affect the gene and protein expression of metal transporter proteins (ZIP8, ZIP14, CTR1 and DMT1) in these organs. Rats were exposed intraperitoneally to lead or lead-melatonin. Our results show that Pb exposure induces changes in the protein and gene expression of ZIP8, ZIP14 and CTR1. Alterations in the copper/zinc ratio found in the blood, liver and kidney were likely related to these changes. With DMT1 expression (gene and protein), a positive correlation was found with lead levels in the kidney. Co-administration of melatonin and lead reduced lead-induced DMT1 expression through an unknown mechanism. This effect of melatonin relates to reduced lead levels in the blood and kidney. The metal transport protein function and our results suggest that DMT1 likely contributes to lead accumulation in organs. These data further elucidate the effects of lead on Cu and Zn and the molecular mechanism underlying lead bio-distribution in animals.


Subject(s)
Carrier Proteins/biosynthesis , Carrier Proteins/genetics , Copper/analysis , Gene Expression Regulation/drug effects , Lead/pharmacology , Melatonin/pharmacology , Zinc/analysis , Animals , Carrier Proteins/metabolism , Lead/analysis , Male , Mass Spectrometry , Melatonin/analysis , Rats , Rats, Wistar
4.
Rev. iberoam. micol ; 35(1): 32-38, ene.-mar. 2018. tab, graf, ilus
Article in English | IBECS | ID: ibc-170920

ABSTRACT

Background. Sporotrichosis is a fungal infection caused by the Sporothrix schenckii complex. The adhesion of the fungus to the host tissue has been considered the key step in the colonization and invasion, but little is known about the early events in the host-parasite interaction. Aims. To evaluate the proteolytic activity of S. schenckii on epithelial cells. Methods. The proteolytic system (at pH 5 and 7) was evaluated using azocoll and zymograms. The host-parasite interaction and epithelial cell response were also analyzed by examining the microfilament cytoskeleton using phalloidin-FITC and transmission electron microscopy. Finally, the metabolic activity was determined using an XTT assay. Results. The zymograms showed that S. schenckii yeast cells possess high intracellular and extracellular proteolytic activities (Mr≥200, 116, 97, and 70kDa) that are pH dependent and are inhibited by PMSF and E64, which act on serine and cysteine-type proteases. During the epithelial cell-protease interaction, the cells showed alterations in the microfilament distribution, as well as in the plasma membrane structure. Moreover, the metabolic activity of the epithelial cells decreased 60% without a protease inhibitor. Conclusions. Our data demonstrate the complexity of the cellular responses during the infection process. This process is somehow counteracted by the action of proteases inhibitors. Furthermore, the results provide critical information for understanding the nature of host-fungus interactions and for searching a new effective antifungal therapy, which includes protease inhibitors (AU)


Antecedentes. La esporotricosis es una infección fúngica causada por el complejo Sporothrix schenckii. La adhesión del hongo al tejido hospedero se ha considerado un paso clave en la colonización e invasión, sin embargo poco se conoce de los eventos tempranos en la interacción hospedero-parasito. Objetivos. Evaluar la actividad proteolítica de S. schenckii en células epiteliales. Métodos. El sistema proteolítico (bajo los valores pH 5 y 7) fue evaluado mediante azocoll y zimogramas. Además, la interacción hospedero-parasito y la respuesta celular fueron analizadas con el examen de los microfilamentos del citoesqueleto mediante faloidina-FITC y microscopia electrónica de transmisión. Finalmente, la actividad metabólica (viabilidad celular) fue determinada por un ensayo de XTT. Resultados. Los zimogramas de S. schenckii muestran que posee una alta actividad proteolítica intracelular y extracelular (Mr≥200, 116, 97 y 70kD) dependientes de pH e inhibidas por PMSF y E64, que actúan sobre serin- y cistein proteasas. Durante la interacción de las células epiteliales-proteasas, las células mostraron alteraciones en la distribución de los microfilamentos y la estructura de la membrana plasmática. Además, la actividad metabólica (viabilidad celular) de las células epiteliales disminuyó un 60% sin inhibidores de proteasas. Conclusiones. Nuestros datos demuestran la complejidad de la respuesta celular durante el proceso de infección, proceso que puede ser en parte contrarrestado por la acción de los inhibidores de proteasas. Además, los resultados proporcionan información crítica para el entendimiento de la naturaleza en la interacción hospedero-hongo y para una nueva terapia antifúngica eficaz que incluya inhibidores de proteasas (AU)


Subject(s)
Humans , Sporotrichosis/microbiology , Peptide Hydrolases/isolation & purification , Sporothrix/isolation & purification , Cytoskeleton/microbiology , Epithelial Cells/microbiology , Dermatomycoses/microbiology
5.
Rev Iberoam Micol ; 35(1): 32-38, 2018.
Article in English | MEDLINE | ID: mdl-29221633

ABSTRACT

BACKGROUND: Sporotrichosis is a fungal infection caused by the Sporothrix schenckii complex. The adhesion of the fungus to the host tissue has been considered the key step in the colonization and invasion, but little is known about the early events in the host-parasite interaction. AIMS: To evaluate the proteolytic activity of S. schenckii on epithelial cells. METHODS: The proteolytic system (at pH 5 and 7) was evaluated using azocoll and zymograms. The host-parasite interaction and epithelial cell response were also analyzed by examining the microfilament cytoskeleton using phalloidin-FITC and transmission electron microscopy. Finally, the metabolic activity was determined using an XTT assay. RESULTS: The zymograms showed that S. schenckii yeast cells possess high intracellular and extracellular proteolytic activities (Mr≥200, 116, 97, and 70kDa) that are pH dependent and are inhibited by PMSF and E64, which act on serine and cysteine-type proteases. During the epithelial cell-protease interaction, the cells showed alterations in the microfilament distribution, as well as in the plasma membrane structure. Moreover, the metabolic activity of the epithelial cells decreased 60% without a protease inhibitor. CONCLUSIONS: Our data demonstrate the complexity of the cellular responses during the infection process. This process is somehow counteracted by the action of proteases inhibitors. Furthermore, the results provide critical information for understanding the nature of host-fungus interactions and for searching a new effective antifungal therapy, which includes protease inhibitors.


Subject(s)
Epithelial Cells/microbiology , Fungal Proteins/isolation & purification , Peptide Hydrolases/isolation & purification , Sporothrix/enzymology , Animals , Azo Compounds/metabolism , Cell Adhesion , Collagen/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Epithelial Cells/metabolism , Epithelial Cells/ultrastructure , Fungal Proteins/metabolism , Host-Parasite Interactions , Hydrogen-Ion Concentration , L Cells , Leucine/analogs & derivatives , Leucine/pharmacology , Mice , Peptide Hydrolases/metabolism , Phenylmethylsulfonyl Fluoride/pharmacology , Serine Proteinase Inhibitors/pharmacology , Sporothrix/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...