Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 21(18)2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32957654

ABSTRACT

Artificial membranes are models for biological systems and are important for applications. We introduce a dry two-step self-assembly method consisting of the high-vacuum evaporation of phospholipid molecules over silicon, followed by a subsequent annealing step in air. We evaporate dipalmitoylphosphatidylcholine (DPPC) molecules over bare silicon without the use of polymer cushions or solvents. High-resolution ellipsometry and AFM temperature-dependent measurements are performed in air to detect the characteristic phase transitions of DPPC bilayers. Complementary AFM force-spectroscopy breakthrough events are induced to detect single- and multi-bilayer formation. These combined experimental methods confirm the formation of stable non-hydrated supported lipid bilayers with phase transitions gel to ripple at 311.5 ± 0.9 K, ripple to liquid crystalline at 323.8 ± 2.5 K and liquid crystalline to fluid disordered at 330.4 ± 0.9 K, consistent with such structures reported in wet environments. We find that the AFM tip induces a restructuring or intercalation of the bilayer that is strongly related to the applied tip-force. These dry supported lipid bilayers show long-term stability. These findings are relevant for the development of functional biointerfaces, specifically for fabrication of biosensors and membrane protein platforms. The observed stability is relevant in the context of lifetimes of systems protected by bilayers in dry environments.


Subject(s)
Lipid Bilayers/chemistry , Membranes, Artificial , Microscopy, Atomic Force/methods , Silicon/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Phase Transition , Phospholipids/chemistry , Temperature , Vacuum , Volatilization
2.
Photochem Photobiol Sci ; 16(8): 1268-1276, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28636041

ABSTRACT

In this paper, we explored the fluorescence properties of eight aurone derivatives bearing methoxy groups and bromine atoms as substituents in the benzene rings. All derivatives showed strong solvatochromic absorption and emission properties in solvents of different polarities. Some of them showed high fluorescence quantum yields, which make them potential compounds for sensing applications. The position of the methoxy groups in the benzofuranone moiety and the presence of bromine atoms in the benzene ring had a strong influence on the fluorescence behaviour of the aurones. DFT calculations allowed us to explain the emission properties of aurones and their solvatochromism, which was related to an excited state with strong charge-transfer character. Aurone 4 has the most promising characteristics showing a large difference in the quantum yields and large Stokes shifts depending on the solvent polarities. These results prompted us to explore some preliminary biological applications for aurone 4 such as the sensing of hydrophobic pockets of a protein and its thermotropic behaviour in liposomes.


Subject(s)
Benzofurans/chemistry , Models, Theoretical , Benzofurans/metabolism , Humans , Liposomes/chemistry , Liposomes/metabolism , Quantum Theory , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Solvents/chemistry , Spectrometry, Fluorescence
3.
Photochem Photobiol Sci ; 14(4): 748-56, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25611022

ABSTRACT

In the present work, we evaluated the role of gramicidin conformation in its photosensitized oxidation in organic solvents when irradiated in the presence of riboflavin. Gramicidin conformation has been described as monomeric in trifluoroethanol and as an intertwined dimer in methanol. Gramicidin showed extensive photo-oxidation upon irradiation in the presence of riboflavin in both solvents, and tryptophan residues were identified to be involved. We synthesized a gramicidin derivative methylated at position 1 of the indole ring of tryptophan to assess its effect on gramicidin conformation and photo-oxidation. Methylated gramicidin showed very similar absorption and emission spectra to gramicidin, but different conformations were identified by circular dichroism spectra. Upon irradiation, N-methylated tryptophan residues in the gramicidin derivative were not easily photo-oxidized by riboflavin compared to gramicidin. Circular dichroism spectra for gramicidin in methanol changed significantly upon irradiation in the presence of riboflavin indicating a change in conformation, while in trifluoroethanol no such changes were observed. Time-resolved fluorescence and anisotropy studies showed that oxidized gramicidin in methanol had shorter fluorescence lifetimes and a shorter rotational correlation time compared to non-irradiated gramicidin. Additionally, SDS-PAGE analysis showed a marked change in the electrophoretic pattern, whereas the high-molecular-weight bands disappeared upon irradiation. We interpret all these results in terms of a riboflavin photosensitized shift in gramicidin conformation from intertwined to monomeric.


Subject(s)
Gramicidin/chemistry , Photosensitizing Agents/chemistry , Riboflavin/chemistry , Tryptophan/chemistry , Anisotropy , Bacillus , Circular Dichroism , Dimerization , Electrophoresis, Polyacrylamide Gel , Fluorescence , Gramicidin/chemical synthesis , Methanol/chemistry , Methylation , Oxidation-Reduction , Photochemical Processes , Protein Conformation , Solvents/chemistry , Trifluoroethanol/chemistry , Tryptophan/chemical synthesis
4.
PLoS One ; 9(5): e97261, 2014.
Article in English | MEDLINE | ID: mdl-24816927

ABSTRACT

Cyclic lipopeptides are produced by a soil Bacillus megaterium strain and several other Bacillus species. In this work, they are detected both in the Bacillus intact cells and the cells culture medium by MALDI-TOF mass spectrometry. The cyclic lipopeptides self-assemble in water media producing negatively charged and large aggregates (300-800 nm of mean hydrodynamic radius) as evaluated by dynamic light scattering and zeta-potential analysis. The aggregate size depends on pH and ionic strength. However, it is not affected by changes in the osmolarity of the outer medium suggesting the absence of an internal aqueous compartment despite the occurrence of low molecular weight phospholipids in their composition as determined from inorganic phosphorus analysis. The activity against a sensitive Bacillus cereus strain was evaluated from inhibition halos and B. cereus lysis. Essential features determining the antibiotic activity on susceptible Bacillus cereus cells are the preserved cyclic moiety conferring cyclic lipopeptides resistance to proteases and the medium pH. The aggregates are inactive per se at the pH of the culture medium which is around 6 or below. The knock out of the sensitive cells only takes place when the aggregates are disassembled due to a high negative charge at pH above 6.


Subject(s)
Bacillus megaterium/metabolism , Lipopeptides/biosynthesis , Microbial Interactions/physiology , Peptides, Cyclic/biosynthesis , Protein Aggregates , Soil Microbiology , Bacillus cereus/drug effects , Hydrogen-Ion Concentration , Lipopeptides/pharmacology , Peptides, Cyclic/pharmacology , Phosphorus/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Surface-Active Agents/chemistry
5.
Biochim Biophys Acta ; 1818(12): 3064-71, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22960286

ABSTRACT

The interaction between the antimicrobial peptide gramicidin (Gr) and dipalmitoylphosphatidylcholine (DPPC)/dioctadecyldimethylammonium bromide (DODAB) 1:1 large unilamellar vesicles (LVs) or bilayer fragments (BFs) was evaluated by means of several techniques. The major methods were: 1) Gr intrinsic fluorescence and circular dichroism (CD) spectroscopy; 2) dynamic light scattering for sizing and zeta-potential analysis; 3) determination of the bilayer phase transition from extrinsic fluorescence of bilayer probes; 4) pictures of the dispersions for evaluation of coloidal stability over a range of time and NaCl concentration. For Gr in LVs, the Gr dimeric channel conformation is suggested from: 1) CD and intrinsic fluorescence spectra similar to those in trifluoroethanol (TFE); 2) KCl or glucose permeation through the LVs/Gr bilayer. For Gr in BFs, the intertwined dimeric, non-channel Gr conformation is evidenced by CD and intrinsic fluorescence spectra similar to those in ethanol. Both LVs and BFs shield Gr tryptophans against quenching by acrylamide but the Stern-Volmer quenching constant was slightly higher for Gr in BFs confirming that the peptide is more exposed to the water phase in BFs than in LVs. The DPPC/DODAB/Gr supramolecular assemblies may predict the behavior of other antimicrobial peptides in assemblies with lipids.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/metabolism , Gramicidin/metabolism , Lipid Bilayers/metabolism , Quaternary Ammonium Compounds/metabolism , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Gramicidin/chemistry , Lipid Bilayers/chemistry , Lipids/chemistry , Molecular Conformation , Phase Transition , Quaternary Ammonium Compounds/chemistry
6.
PLoS One ; 7(6): e40254, 2012.
Article in English | MEDLINE | ID: mdl-22768264

ABSTRACT

Changes in the cholesterol (Chol) content of biological membranes are known to alter the physicochemical properties of the lipid lamella and consequently the function of membrane-associated enzymes. To characterize these changes, we used steady-state and time resolved fluorescence spectroscopy and two photon-excitation microscopy techniques. The membrane systems were chosen according to the techniques that were used: large unilamellar vesicles (LUVs) for cuvette and giant unilamellar vesicles (GUVs) for microscopy measurements; they were prepared from dipalmitoyl phosphatidylcholine (DPPC) and dioctadecyl phosphatidylcholine (DOPC) in mixtures that are well known to form lipid domains. Two fluorescent probes, which insert into different regions of the bilayer, were selected: 1,6-diphenyl-1,3,5-hexatriene (DPH) was located at the deep hydrophobic core of the acyl chain regions and 2-dimethylamino-6-lauroylnaphthalene (Laurdan) at the hydrophilic-hydrophobic membrane interface. Our spectroscopy results show that (i) the changes induced by cholesterol in the deep hydrophobic phospholipid acyl chain domain are different from the ones observed in the superficial region of the hydrophilic-hydrophobic interface, and these changes depend on the state of the lamella and (ii) the incorporation of cholesterol into the lamella induces an increase in the orientation dynamics in the deep region of the phospholipid acyl chains with a corresponding decrease in the orientation at the region close to the polar lipid headgroups. The microscopy data from DOPC/DPPC/Chol GUVs using Laurdan generalized polarization (Laurdan GP) suggest that a high cholesterol content in the bilayer weakens the stability of the water hydrogen bond network and hence the stability of the liquid-ordered phase (Lo).


Subject(s)
Cholesterol/chemistry , Membrane Microdomains/chemistry , Membranes, Artificial , 2-Naphthylamine/analogs & derivatives , 2-Naphthylamine/chemistry , Anisotropy , Diphenylhexatriene/chemistry , Fluorescence Polarization , Laurates/chemistry , Microscopy, Fluorescence, Multiphoton , Phase Transition , Spectrometry, Fluorescence , Temperature , Unilamellar Liposomes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...