Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Rev Immunol ; 41: 181-205, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37126417

ABSTRACT

There is a dramatic remodeling of the T cell compartment during aging. The most notorious changes are the reduction of the naive T cell pool and the accumulation of memory-like T cells. Memory-like T cells in older people acquire a phenotype of terminally differentiated cells, lose the expression of costimulatory molecules, and acquire properties of senescent cells. In this review, we focus on the different subsets of age-associated T cells that accumulate during aging. These subsets include extremely cytotoxic T cells with natural killer properties, exhausted T cells with altered cytokine production, and regulatory T cells that gain proinflammatory features. Importantly, all of these subsets lose their lymph node homing capacity and migrate preferentially to nonlymphoid tissues, where they contribute to tissue deterioration and inflammaging.


Subject(s)
Aging , T-Lymphocyte Subsets , Humans , Animals , T-Lymphocytes, Regulatory , Cell Differentiation
2.
Cell Metab ; 33(3): 470-472, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33657392

ABSTRACT

When T cells are exposed to continuous antigen stimulation, they become exhausted. Here, we preview findings from Scharping et al. (2021), who have illuminated the molecular mechanism by which the persistent antigen stimulation and severe hypoxic conditions in the intratumoral environment drive T cell exhaustion, losing their cytotoxic function and anticancer effects.


Subject(s)
CD8-Positive T-Lymphocytes , Mitochondria , CD8-Positive T-Lymphocytes/metabolism
3.
Science ; 368(6497): 1371-1376, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32439659

ABSTRACT

The effect of immunometabolism on age-associated diseases remains uncertain. In this work, we show that T cells with dysfunctional mitochondria owing to mitochondrial transcription factor A (TFAM) deficiency act as accelerators of senescence. In mice, these cells instigate multiple aging-related features, including metabolic, cognitive, physical, and cardiovascular alterations, which together result in premature death. T cell metabolic failure induces the accumulation of circulating cytokines, which resembles the chronic inflammation that is characteristic of aging ("inflammaging"). This cytokine storm itself acts as a systemic inducer of senescence. Blocking tumor necrosis factor-α signaling or preventing senescence with nicotinamide adenine dinucleotide precursors partially rescues premature aging in mice with Tfam-deficient T cells. Thus, T cells can regulate organismal fitness and life span, which highlights the importance of tight immunometabolic control in both aging and the onset of age-associated diseases.


Subject(s)
Aging, Premature/immunology , DNA-Binding Proteins/deficiency , Mitochondria/metabolism , Mitochondrial Proteins/deficiency , Multimorbidity , T-Lymphocytes/metabolism , Transcription Factors/deficiency , Aging, Premature/genetics , Aging, Premature/prevention & control , Animals , Cytokine Release Syndrome/immunology , DNA-Binding Proteins/genetics , Female , Gene Deletion , Inflammation/genetics , Inflammation/immunology , Longevity , Male , Mice , Mice, Mutant Strains , Mitochondrial Proteins/genetics , NAD/administration & dosage , NAD/pharmacology , Physical Fitness , T-Lymphocytes/ultrastructure , Transcription Factors/genetics , Tumor Necrosis Factor-alpha/antagonists & inhibitors
4.
FEBS J ; 287(16): 3350-3369, 2020 08.
Article in English | MEDLINE | ID: mdl-32255251

ABSTRACT

The inflammatory response involves the activation of several cell types to fight insults caused by a plethora of agents, and to maintain the tissue homoeostasis. On the one hand, cells involved in the pro-inflammatory response, such as inflammatory M1 macrophages, Th1 and Th17 lymphocytes or activated microglia, must rapidly provide energy to fuel inflammation, which is essentially accomplished by glycolysis and high lactate production. On the other hand, regulatory T cells or M2 macrophages, which are involved in immune regulation and resolution of inflammation, preferentially use fatty acid oxidation through the TCA cycle as a main source for energy production. Here, we discuss the impact of glycolytic metabolism at the different steps of the inflammatory response. Finally, we review a wide variety of molecular mechanisms which could explain the relationship between glycolytic metabolites and the pro-inflammatory phenotype, including signalling events, epigenetic remodelling, post-transcriptional regulation and post-translational modifications. Inflammatory processes are a common feature of many age-associated diseases, such as cardiovascular and neurodegenerative disorders. The finding that immunometabolism could be a master regulator of inflammation broadens the avenue for treating inflammation-related pathologies through the manipulation of the vascular and immune cell metabolism.


Subject(s)
Citric Acid Cycle/immunology , Glycolysis/immunology , Inflammation/immunology , Macrophage Activation/immunology , Macrophages/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Humans , Inflammation/metabolism , Macrophages/classification , Macrophages/metabolism , Neurodegenerative Diseases/immunology , Neurodegenerative Diseases/metabolism , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Regulatory/metabolism
5.
Int J Mol Sci ; 20(11)2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31195626

ABSTRACT

Extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, are cell-derived membranous structures that were originally catalogued as a way of releasing cellular waste products. Since the discovery of their function in intercellular communication as carriers of proteins, lipids, and DNA and RNA molecules, numerous therapeutic approaches have focused on the use of EVs, in part because of their minimized risk compared to cell-based therapies. The skin is the organ with the largest surface in the body. Besides the importance of its body barrier function, much attention has been paid to the skin in regenerative medicine because of its cosmetic aspect, which is closely related to disorders affecting pigmentation and the presence or absence of hair follicles. The use of exosomes in therapeutic approaches for cutaneous wound healing has been reported and is briefly reviewed here. However, less attention has been paid to emerging interest in the potential capacity of EVs as modulators of hair follicle dynamics. Hair follicles are skin appendices that mainly comprise an epidermal and a mesenchymal component, with the former including a major reservoir of epithelial stem cells but also melanocytes and other cell types. Hair follicles continuously cycle, undergoing consecutive phases of resting, growing, and regression. Many biomolecules carried by EVs have been involved in the control of the hair follicle cycle and stem cell function. Thus, investigating the role of either naturally produced or therapeutically delivered EVs as signaling vehicles potentially involved in skin homeostasis and hair cycling may be an important step in the attempt to design future strategies towards the efficient treatment of several skin disorders.


Subject(s)
Extracellular Vesicles/metabolism , Hair Follicle/metabolism , Skin/metabolism , Animals , Humans , Models, Biological , Regenerative Medicine , Signal Transduction
6.
Mitochondrion ; 41: 51-57, 2018 07.
Article in English | MEDLINE | ID: mdl-29032101

ABSTRACT

Mitochondria fulfill important and diverse roles during the different stages of T cell adaptive responses. Here we discuss the role of the mitochondria in T cells from the initial steps of activation at the immune synapse to their participation in memory response and T cell exhaustion. Mitochondria are relocated to the immune synapse in order to supply local ATP and to aid calcium signaling. During expansion and proliferation, mitochondrial reactive oxygen species drive proliferation. Aerobic glycolysis, glutaminolysis and fatty acid oxidation regulate the program of differentiation into effector or regulatory T cell subsets, and mitochondrial remodeling proteins are required for the long-lasting phenotype of memory cells.


Subject(s)
Energy Metabolism , Immunity, Innate/immunology , Metabolic Diseases/immunology , Mitochondria/immunology , Mitochondria/metabolism , T-Lymphocytes/immunology , Animals , Humans , Metabolic Diseases/pathology , Mitochondria/pathology , Signal Transduction
7.
Front Cell Dev Biol ; 5: 95, 2017.
Article in English | MEDLINE | ID: mdl-29164114

ABSTRACT

The function of mitochondria and lysosomes has classically been studied separately. However, evidence has now emerged of intense crosstalk between these two organelles, such that the activity or stress status of one organelle may affect the other. Direct physical contacts between mitochondria and the endolysosomal compartment have been reported as a rapid means of interorganelle communication, mediating lipid or other metabolite exchange. Moreover, mitochondrial derived vesicles can traffic obsolete mitochondrial proteins into the endolysosomal system for their degradation or secretion to the extracellular milieu as exosomes, representing an additional mitochondrial quality control mechanism that connects mitochondria and lysosomes independently of autophagosome formation. Here, we present what is currently known about the functional and physical communication between mitochondria and lysosomes or lysosome-related organelles, and their role in sustaining cellular homeostasis.

SELECTION OF CITATIONS
SEARCH DETAIL
...