Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(5): e0215945, 2019.
Article in English | MEDLINE | ID: mdl-31042762

ABSTRACT

The composition of the vaginal microbiome, including both the presence of pathogens involved in sexually transmitted infections (STI) as well as commensal microbiota, has been shown to have important associations for a woman's reproductive and general health. Currently, healthcare providers cannot offer comprehensive vaginal microbiome screening, but are limited to the detection of individual pathogens, such as high-risk human papillomavirus (hrHPV), the predominant cause of cervical cancer. There is no single test on the market that combines HPV, STI, and microbiome screening. Here, we describe a novel inclusive vaginal health assay that combines self-sampling with sequencing-based HPV detection and genotyping, vaginal microbiome analysis, and STI-associated pathogen detection. The assay includes genotyping and detection of 14 hrHPV types, 5 low-risk HPV types (lrHPV), as well as the relative abundance of 31 bacterial taxa of clinical importance, including Lactobacillus, Sneathia, Gardnerella, and 3 pathogens involved in STI, with high sensitivity, specificity, and reproducibility. For each of these taxa, reference ranges were determined in a group of 50 self-reported healthy women. The HPV sequencing portion of the test was evaluated against the digene High-Risk HPV HC2 DNA test. For hrHPV genotyping, agreement was 95.3% with a kappa of 0.804 (601 samples); after removal of samples in which the digene hrHPV probe showed cross-reactivity with lrHPV types, the sensitivity and specificity of the hrHPV genotyping assay were 94.5% and 96.6%, respectively, with a kappa of 0.841. For lrHPV genotyping, agreement was 93.9% with a kappa of 0.788 (148 samples), while sensitivity and specificity were 100% and 92.9%, respectively. This novel assay could be used to complement conventional cervical cancer screening, because its self-sampling format can expand access among women who would otherwise not participate, and because of its additional information about the composition of the vaginal microbiome and the presence of pathogens.


Subject(s)
Microbiota , Papillomaviridae/genetics , Papillomavirus Infections/diagnosis , Sexually Transmitted Diseases/diagnosis , Vagina/virology , Adolescent , Adult , Capsid Proteins/genetics , DNA, Viral/genetics , DNA, Viral/isolation & purification , Female , Gardnerella/genetics , Gardnerella/isolation & purification , Genotype , Humans , Lactobacillus/genetics , Lactobacillus/isolation & purification , Limit of Detection , Middle Aged , Oncogene Proteins, Viral/genetics , Papillomaviridae/isolation & purification , Papillomavirus Infections/virology , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Reproducibility of Results , Sensitivity and Specificity , Sexually Transmitted Diseases/virology , Vagina/microbiology , Young Adult
2.
Stand Genomic Sci ; 13: 26, 2018.
Article in English | MEDLINE | ID: mdl-30344889

ABSTRACT

Members of the genus Cylindrospermopsis represent an important environmental and health concern. Strains CS-508 and MVCC14 of C. raciborskii were isolated from freshwater reservoirs located in Australia and Uruguay, respectively. While CS-508 has been reported as non-toxic, MVCC14 is a saxitoxin (STX) producer. We annotated the draft genomes of these C. raciborskii strains using the assembly of reads obtained from Illumina MiSeq sequencing. The final assemblies resulted in genome sizes close to 3.6 Mbp for both strains and included 3202 ORFs for CS-508 (in 163 contigs) and 3560 ORFs for MVCC14 (in 99 contigs). Finally, both the average nucleotide identity (ANI) and the similarity of gene content indicate that these two genomes should be considered as strains of the C. raciborskii species.

3.
Front Microbiol ; 7: 94, 2016.
Article in English | MEDLINE | ID: mdl-26903973

ABSTRACT

Cell division in bacteria has been studied mostly in Escherichia coli and Bacillus subtilis, model organisms for Gram-negative and Gram-positive bacteria, respectively. However, cell division in filamentous cyanobacteria is poorly understood. Here, we identified a novel protein, named CyDiv (Cyanobacterial Division), encoded by the all2320 gene in Anabaena sp. PCC 7120. We show that CyDiv plays a key role during cell division. CyDiv has been previously described only as an exclusive and conserved hypothetical protein in filamentous cyanobacteria. Using polyclonal antibodies against CyDiv, we showed that it localizes at different positions depending on cell division timing: poles, septum, in both daughter cells, but also in only one of the daughter cells. The partial deletion of CyDiv gene generates partial defects in cell division, including severe membrane instability and anomalous septum localization during late division. The inability to complete knock out CyDiv strains suggests that it is an essential gene. In silico structural protein analyses and our experimental results suggest that CyDiv is an FtsB/DivIC-like protein, and could therefore, be part of an essential late divisome complex in Anabaena sp. PCC 7120.

4.
Toxins (Basel) ; 6(6): 1896-915, 2014 Jun 20.
Article in English | MEDLINE | ID: mdl-24956074

ABSTRACT

Different environmental nitrogen sources play selective roles in the development of cyanobacterial blooms and noxious effects are often exacerbated when toxic cyanobacteria are dominant. Cylindrospermopsis raciborskii CS-505 (heterocystous, nitrogen fixing) and Raphidiopsis brookii D9 (non-N2 fixing) produce the nitrogenous toxins cylindrospermopsin (CYN) and paralytic shellfish toxins (PSTs), respectively. These toxin groups are biosynthesized constitutively by two independent putative gene clusters, whose flanking genes are target for nitrogen (N) regulation. It is not yet known how or if toxin biosynthetic genes are regulated, particularly by N-source dependency. Here we show that binding boxes for NtcA, the master regulator of N metabolism, are located within both gene clusters as potential regulators of toxin biosynthesis. Quantification of intra- and extracellular toxin content in cultures at early stages of growth under nitrate, ammonium, urea and N-free media showed that N-sources influence neither CYN nor PST production. However, CYN and PST profiles were altered under N-free medium resulting in a decrease in the predicted precursor toxins (doCYN and STX, respectively). Reduced STX amounts were also observed under growth in ammonium. Quantification of toxin biosynthesis and transport gene transcripts revealed a constitutive transcription under all tested N-sources. Our data support the hypothesis that PSTs and CYN are constitutive metabolites whose biosynthesis is correlated to cyanobacterial growth rather than directly to specific environmental conditions. Overall, the constant biosynthesis of toxins and expression of the putative toxin-biosynthesis genes supports the usage of qPCR probes in water quality monitoring of toxic cyanobacteria.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Toxins/biosynthesis , Cyanobacteria/metabolism , Cylindrospermopsis/metabolism , Gene Expression Regulation, Bacterial , Nitrogen Fixation , Poisons/metabolism , Alkaloids , Ammonium Compounds/metabolism , Bacterial Proteins/genetics , Bacterial Toxins/chemistry , Batch Cell Culture Techniques , Brazil , Cyanobacteria/growth & development , Cyanobacteria/isolation & purification , Cyanobacteria Toxins , Cylindrospermopsis/growth & development , Cylindrospermopsis/isolation & purification , Fresh Water/microbiology , Molecular Structure , Nitrates/metabolism , Poisons/chemistry , Queensland , Uracil/analogs & derivatives , Uracil/biosynthesis , Uracil/chemistry , Urea/metabolism
5.
PLoS One ; 8(2): e55664, 2013.
Article in English | MEDLINE | ID: mdl-23457475

ABSTRACT

Paralytic shellfish poisoning toxins (PSTs) are a family of more than 30 natural alkaloids synthesized by dinoflagellates and cyanobacteria whose toxicity in animals is mediated by voltage-gated Na(+) channel blocking. The export of PST analogues may be through SxtF and SxtM, two putative MATE (multidrug and toxic compound extrusion) family transporters encoded in PSTs biosynthetic gene cluster (sxt). sxtM is present in every sxt cluster analyzed; however, sxtF is only present in the Cylindrospermopsis-Raphidiopsis clade. These transporters are energetically coupled with an electrochemical gradient of proton (H(+)) or sodium (Na(+)) ions across membranes. Because the functional role of PSTs remains unknown and methods for genetic manipulation in PST-producing organisms have not yet been developed, protein structure analyses will allow us to understand their function. By analyzing the sxt cluster of eight PST-producing cyanobacteria, we found no correlation between the presence of sxtF or sxtM and a specific PSTs profile. Phylogenetic analyses of SxtF/M showed a high conservation of SxtF in the Cylindrospermopsis-Raphidiopsis clade, suggesting conserved substrate affinity. Two domains involved in Na(+) and drug recognition from NorM proteins (MATE family) of Vibrio parahaemolyticus and V. cholerae are present in SxtF/M. The Na(+) recognition domain was conserved in both SxtF/M, indicating that Na(+) can maintain the role as a cation anti-transporter. Consensus motifs for toxin binding differed between SxtF and SxtM implying differential substrate binding. Through protein modeling and docking analysis, we found that there is no marked affinity between the recognition domain and a specific PST analogue. This agrees with our previous results of PST export in R. brookii D9, where we observed that the response to Na(+) incubation was similar to different analogues. These results reassert the hypothesis regarding the involvement of Na(+) in toxin export, as well as the motifs L(398)XGLQD(403) (SxtM) and L(390)VGLRD(395) (SxtF) in toxin recognition.


Subject(s)
Bacterial Proteins/metabolism , Cylindrospermopsis/metabolism , Marine Toxins/metabolism , Membrane Transport Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biological Transport, Active , Computer Simulation , Cylindrospermopsis/chemistry , Cylindrospermopsis/genetics , Marine Toxins/chemistry , Marine Toxins/genetics , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Models, Molecular , Multigene Family , Phylogeny , Protein Conformation , Saxitoxin/analogs & derivatives , Saxitoxin/genetics , Saxitoxin/metabolism
6.
Toxicon ; 60(7): 1324-34, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-22983012

ABSTRACT

Paralytic shellfish poisoning (PSP) toxins are a group of naturally occurring neurotoxic alkaloids produced among several genera of primarily freshwater cyanobacteria and marine dinoflagellates. Although saxitoxin (STX) and analogs are all potent Na(+) channel blockers in vertebrate cells, the functional role of these compounds for the toxigenic microorganisms is unknown. Based upon the known importance of monovalent cations (such as sodium) in the maintenance of cellular homeostasis and ion channel function, we examined the effect of high extracellular concentrations of these ions on growth, cellular integrity, toxin production and release to the external medium in the filamentous freshwater cyanobacterium, Raphidiopsis brookii D9; a gonyautoxins (GTX2/3) and STX producing toxigenic strain. We observed a toxin export in response to high (17 mM) NaCl and KCl concentrations in the growth medium that was not primarily related to osmotic stress effects, compared to the osmolyte mannitol. Addition of exogenous PSP toxins with the same compositional profile as the one produced by R. brookii D9 was able to partially mitigate this effect of high Na⁺ (17 mM). The PSP toxin biosynthetic gene cluster (sxt) in D9 has two genes (sxtF and sxtM) that encode for a MATE (multidrug and toxic compound extrusion) transporter. This protein family, represented by NorM in the bacterium Vibrio parahaemolyticus, confers resistance to multiple cationic toxic agents through Na⁺/drug antiporters. Conserved domains for Na⁺ and drug recognition have been described in NorM. For the D9 sxt cluster, the Na⁺ recognition domain is conserved in both SxtF and SxtM, but the drug recognition domain differs between them. These results suggest that PSP toxins are exported directly in response to the presence of monovalent cations (Na⁺, K⁺) at least at elevated concentrations. Thus, the presence of both genes in the sxt cluster from strain D9 can be explained as a selective recognition mechanism by the SxtF/M transporters for GTX2/3 and STX. We propose that these toxins in cyanobacteria could act extracellularly as a protective mechanism to ensure homeostasis against extreme salt variation in the environment.


Subject(s)
Cyanobacteria/pathogenicity , Potassium/pharmacology , Saxitoxin/analogs & derivatives , Saxitoxin/metabolism , Shellfish Poisoning/etiology , Sodium/pharmacology , Monensin/pharmacology , Saxitoxin/analysis
7.
Toxicon ; 56(8): 1350-61, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20692275

ABSTRACT

The toxigenic freshwater cyanobacterium Cylindrospermopsis raciborskii T3 has been used as a model to study and elucidate the biosynthetic pathway of tetrahydropurine neurotoxins associated with paralytic shellfish poisoning (PSP). There are nevertheless several inconsistencies and contradictions in the toxin profile of this strain as published by different research groups, and claimed to include carbamoyl (STX, NEO, GTX2/3), decarbamoyl (dcSTX), and N-sulfocarbamoyl (C1/2, B1) derivatives. Our analysis of the complete genome of another PSP toxin-producing cyanobacterium, Raphidiopsis brookii D9, which is closely related to C. raciborskii T3, resolved many issues regarding the correlation between biosynthetic pathways, corresponding genes and the T3 toxin profile. The putative sxt gene cluster in R. brookii D9 has a high synteny with the T3 sxt cluster, with 100% nucleotide identity among the shared genes. We also compared the PSP toxin profile of the strains by liquid chromatography coupled to mass spectrometry (LC-MS/MS). In contrast to published reports, our reassessment of the PSP toxin profile of T3 confirmed production of only STX, NEO and dcNEO. We gained significant insights via correlation between specific sxt genes and their role in PSP toxin synthesis in both D9 and T3 strains. In particular, analysis of sulfotransferase functions for SxtN (N-sulfotransferase) and SxtSUL (O-sulfotransferase) enzymes allowed us to propose an extension of the PSP toxin biosynthetic pathway from STX to the production of the derivatives GTX2/3, C1/2 and B1. This is a significantly revised view of the genetic mechanisms underlying synthesis of sulfated and sulfonated STX analogues in toxigenic cyanobacteria.


Subject(s)
Bacterial Toxins/chemistry , Cylindrospermopsis/chemistry , Sulfotransferases/physiology , Bacterial Toxins/biosynthesis , Bacterial Toxins/isolation & purification , Chromatography, Liquid , Cylindrospermopsis/genetics , Genes, Bacterial , Genome, Bacterial , Molecular Sequence Data , Multigene Family , Sequence Analysis, DNA , Sulfotransferases/genetics , Tandem Mass Spectrometry
8.
PLoS One ; 5(2): e9235, 2010 Feb 16.
Article in English | MEDLINE | ID: mdl-20169071

ABSTRACT

Cyanobacterial morphology is diverse, ranging from unicellular spheres or rods to multicellular structures such as colonies and filaments. Multicellular species represent an evolutionary strategy to differentiate and compartmentalize certain metabolic functions for reproduction and nitrogen (N(2)) fixation into specialized cell types (e.g. akinetes, heterocysts and diazocytes). Only a few filamentous, differentiated cyanobacterial species, with genome sizes over 5 Mb, have been sequenced. We sequenced the genomes of two strains of closely related filamentous cyanobacterial species to yield further insights into the molecular basis of the traits of N(2) fixation, filament formation and cell differentiation. Cylindrospermopsis raciborskii CS-505 is a cylindrospermopsin-producing strain from Australia, whereas Raphidiopsis brookii D9 from Brazil synthesizes neurotoxins associated with paralytic shellfish poisoning (PSP). Despite their different morphology, toxin composition and disjunct geographical distribution, these strains form a monophyletic group. With genome sizes of approximately 3.9 (CS-505) and 3.2 (D9) Mb, these are the smallest genomes described for free-living filamentous cyanobacteria. We observed remarkable gene order conservation (synteny) between these genomes despite the difference in repetitive element content, which accounts for most of the genome size difference between them. We show here that the strains share a specific set of 2539 genes with >90% average nucleotide identity. The fact that the CS-505 and D9 genomes are small and streamlined compared to those of other filamentous cyanobacterial species and the lack of the ability for heterocyst formation in strain D9 allowed us to define a core set of genes responsible for each trait in filamentous species. We presume that in strain D9 the ability to form proper heterocysts was secondarily lost together with N(2) fixation capacity. Further comparisons to all available cyanobacterial genomes covering almost the entire evolutionary branch revealed a common minimal gene set for each of these cyanobacterial traits.


Subject(s)
Bacterial Proteins/genetics , Cyanobacteria/genetics , Cylindrospermopsis/genetics , Genome, Bacterial/genetics , Bacterial Toxins/metabolism , Cyanobacteria/classification , Cyanobacteria/metabolism , Cylindrospermopsis/cytology , Cylindrospermopsis/ultrastructure , Evolution, Molecular , Microscopy, Electron, Transmission , Multigene Family/genetics , Nitrogen Fixation/genetics , Phylogeny , Repetitive Sequences, Nucleic Acid/genetics , Sequence Analysis, DNA , Species Specificity , Synteny
9.
Syst Appl Microbiol ; 32(1): 37-48, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19118969

ABSTRACT

Cylindrospermopsis raciborskii is a species of freshwater, bloom-forming cyanobacterium. C. raciborskii produces toxins, including cylindrospermopsin (hepatotoxin) and saxitoxin (neurotoxin), although non toxin-producing strains are also observed. In spite of differences in toxicity, C. raciborskii strains comprise a monophyletic group, based upon 16S rRNA gene sequence identities (greater than 99%). We performed phylogenetic analyses; 16S rRNA gene and 16S-23S rRNA gene internally transcribed spacer (ITS-1) sequence comparisons, and genomic DNA restriction fragment length polymorphism (RFLP), resolved by pulsed-field gel electrophoresis (PFGE), of strains of C. raciborskii, obtained mainly from the Australian phylogeographic cluster. Our results showed no correlation between toxic phenotype and phylogenetic association in the Australian strains. Analyses of the 16S rRNA gene and the respective ITS-1 sequences (long L, and short S) showed an independent evolution of each ribosomal operon. The genes putatively involved in the cylindrospermopsin biosynthetic pathway were present in one locus and only in the hepatotoxic strains, demonstrating a common genomic organization for these genes and the absence of mutated or inactivated biosynthetic genes in the non toxic strains. In summary, our results support the hypothesis that the genes involved in toxicity may have been transferred as an island by processes of gene lateral transfer, rather than convergent evolution.


Subject(s)
Cylindrospermopsis/classification , Cylindrospermopsis/pathogenicity , Phylogeny , Saxitoxin/metabolism , Uracil/analogs & derivatives , Alkaloids , Bacterial Toxins , Cyanobacteria Toxins , Cylindrospermopsis/genetics , Cylindrospermopsis/physiology , DNA, Bacterial/analysis , DNA, Bacterial/genetics , DNA, Ribosomal Spacer/analysis , DNA, Ribosomal Spacer/genetics , Gene Transfer, Horizontal , Molecular Sequence Data , Peptide Synthases/genetics , Peptide Synthases/metabolism , Phenotype , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 23S/genetics , Saxitoxin/genetics , Sequence Analysis, DNA , Species Specificity , Uracil/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...