Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(5)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38473530

ABSTRACT

This research evaluates the efficacy of catalysts based on Co3O4-gC3N4@ZnONPs in the degradation of ciprofloxacin (CFX) and the photocatalytic production of H2 through water splitting. The results show that CFX experiences prompt photodegradation, with rates reaching up to 99% within 60 min. Notably, the 5% (Co3O4-gC3N4)@ZnONPs emerged as the most potent catalyst. The recyclability studies of the catalyst revealed a minimal activity loss, approximately 6%, after 15 usage cycles. Using gas chromatography-mass spectrometry (GC-MS) techniques, the by-products of CFX photodegradation were identified, which enabled the determination of the potential degradation pathway and its resultant products. Comprehensive assessments involving photoluminescence, bandgap evaluations, and the study of scavenger reactions revealed a degradation mechanism driven primarily by superoxide radicals. Moreover, the catalysts demonstrated robust performance in H2 photocatalytic production, with some achieving outputs as high as 1407 µmol/hg in the visible spectrum (around 500 nm). Such findings underline the potential of these materials in environmental endeavors, targeting both water purification from organic pollutants and energy applications.

2.
Biomimetics (Basel) ; 6(1)2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33406738

ABSTRACT

Different Ag@TiO2 and Ag@ZnO catalysts, with nanowire (NW) structure, were synthesized containing different amounts of silver loading (1, 3, 5, and 10 wt.%) and characterized by FE-SEM, HRTEM, BET, XRD, Raman, XPS, and UV-vis. The photocatalytic activity of the composites was studied by the production of hydrogen via water splitting under UV-vis light and the degradation of the antibiotic ciprofloxacin. The maximum hydrogen production of all the silver-based catalysts was obtained with a silver loading of 10 wt.% under irradiation at 500 nm. Moreover, 10%Ag@TiO2 NWs was the catalyst with the highest activity in the hydrogen production reaction (1119 µmol/hg), being 18 times greater than the amount obtained with the pristine TiO2 NW catalyst. The most dramatic difference in hydrogen production was obtained with 10%Ag@TiO2-P25, 635 µmol/hg, being 36 times greater than the amount reported for the unmodified TiO2-P25 (18 µmol/hg). The enhancement of the catalytic activity is attributed to a synergism between the silver nanoparticles incorporated and the high surface area of the composites. In the case of the degradation of ciprofloxacin, all the silver-based catalysts degraded more than 70% of the antibiotic in 60 min. The catalyst that exhibited the best result was 3%Ag@ZnO commercial, with 99.72% of degradation. The control experiments and stability tests showed that photocatalysis was the route of degradation and the selected silver-based catalysts were stable after seven cycles, with less than 1% loss of efficiency per cycle. These results suggest that the catalysts could be employed in additional cycles without the need to be resynthesized, thus reducing remediation costs.

3.
Biomimetics (Basel) ; 5(3)2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32839383

ABSTRACT

For some decades, the scientific community has been looking for alternatives to the use of fossil fuels that allow for the planet's sustainable and environmentally-friendly development. To do this, attempts have been made to mimic some processes that occur in nature, among which the photosystem-II stands out, which allows water splitting operating with different steps to generate oxygen and hydrogen. This research presents promising results using synthetic catalysts, which try to simulate some natural processes, and which are based on Au@ZnO-graphene compounds. These catalysts were prepared by incorporating different amounts of gold nanoparticles (1 wt.%, 3 wt.%, 5 wt.%, 10 wt.%) and graphene (1 wt.%) on the surface of synthesized zinc oxide nanowires (ZnO NWs), and zinc oxide nanoparticles (ZnO NPs), along with a commercial form (commercial ZnO) for comparison purposes. The highest amount of hydrogen (1127 µmol/hg) was reported by ZnO NWs with a gold and graphene loadings of 10 wt.% and 1 wt.%, respectively, under irradiation at 400 nm. Quantities of 759 µmol/hg and 709 µmol/hg were obtained with catalysts based on ZnO NPs and commercial ZnO, respectively. The photocatalytic activity of all composites increased with respect to the bare semiconductors, being 2.5 times higher in ZnO NWs, 8.8 times higher for ZnO NPs, and 7.5 times higher for commercial ZnO. The high photocatalytic activity of the catalysts is attributed, mainly, to the synergism between the different amount of gold and graphene incorporated, and the surface area of the composites.

4.
J Environ Manage ; 247: 822-828, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31301647

ABSTRACT

Water contamination has compromised the quality of this resource during the last years with the presence of persistent organic pollutants. Because of the resistance of these compounds to degradation, several advance oxidation techniques have been proposed. In this study, we report the employment of an advance oxidation technique in the degradation of benzophenone-4 (BP-4), using TiO2 as catalyst, which was obtained following a fast-hydrothermal method. TiO2 nanowires (TiO2NWs) were fully characterized considering the morphology, elemental composition, oxidation states, vibrational modes and crystalline structure with SEM and TEM, EDS, XPS, FTIR and XRD, respectively. The photocatalytic degradation was carried out using a home-made photoreactor under slightly acidic conditions achieving an average of 90% removal. It was determined that the photocatalysis is the most probable route of degradation since the photolysis or catalysis procedures produce negligible contributions. An apparent kinetic constant of 1.29 × 10-2 min-1 was determined, according to a pseudo-first order reaction.


Subject(s)
Nanowires , Water Pollutants, Chemical , Benzophenones , Catalysis , Photolysis , Sunscreening Agents , Titanium , Ultraviolet Rays
5.
J Environ Manage ; 167: 23-8, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26610195

ABSTRACT

The photocatalytic degradation of p-aminobenzoic acid was studied using TiO2 nanowires as the catalyst synthesized through a hydrothermal procedure. The as-synthesized TiO2 nanowires were fully characterized by SEM, TEM, XRD and Raman with a very high surface area of 512 m(2) g(-1). The photocatalytic degradation of p-aminobenzoic acid was carried out under 180 min of constant radiation and the results were compared with P25 as commercial catalyst. Optimal experimental conditions were determined for TiO2 nanowires with a catalyst dosage of 1.0 g L(-1) under acidic conditions with a 20 µM p-aminobenzoic acid solution obtaining 95% of degradation. Under similar experimental conditions comparative studies were performed obtaining 98% of degradation when P25 is employed. In both systems, a pseudo first order reaction was found to provide the best correlations, with constant rates of 2.0 × 10(-2) min(-1) and 2.4 × 10(-2) min(-1) for TiO2 nanowires and P25, respectively.


Subject(s)
4-Aminobenzoic Acid/chemistry , Nanowires/chemistry , Titanium/chemistry , Catalysis , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Spectrum Analysis, Raman , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...