Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cardiovasc Res ; 118(18): 3556-3575, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36504368

ABSTRACT

Heart failure (HF) is marked by distinctive changes in myocardial uptake and utilization of energy substrates. Among the different types of HF, HF with preserved ejection fraction (HFpEF) is a highly prevalent, complex, and heterogeneous condition for which metabolic derangements seem to dictate disease progression. Changes in intermediate metabolism in cardiometabolic HFpEF-among the most prevalent forms of HFpEF-have a large impact both on energy provision and on a number of signalling pathways in the heart. This dual, metabolic vs. signalling, role is played in particular by long-chain fatty acids (LCFAs) and short-chain carbon sources [namely, short-chain fatty acids (SCFAs) and ketone bodies (KBs)]. LCFAs are key fuels for the heart, but their excess can be harmful, as in the case of toxic accumulation of lipid by-products (i.e. lipotoxicity). SCFAs and KBs have been proposed as a potential major, alternative source of energy in HFpEF. At the same time, both LCFAs and short-chain carbon sources are substrate for protein post-translational modifications and other forms of direct and indirect signalling of pivotal importance in HFpEF pathogenesis. An in-depth molecular understanding of the biological functions of energy substrates and their signalling role will be instrumental in the development of novel therapeutic approaches to HFpEF. Here, we summarize the current evidence on changes in energy metabolism in HFpEF, discuss the signalling role of intermediate metabolites through, at least in part, their fate as substrates for post-translational modifications, and highlight clinical and translational challenges around metabolic therapy in HFpEF.


Subject(s)
Heart Failure , Humans , Heart Failure/metabolism , Stroke Volume , Myocardium/metabolism , Energy Metabolism , Signal Transduction
3.
Autophagy ; 17(7): 1714-1728, 2021 07.
Article in English | MEDLINE | ID: mdl-32543276

ABSTRACT

Macroautophagy/autophagy is an intracellular process involved in the breakdown of macromolecules and organelles. Recent studies have shown that PKD2/PC2/TRPP2 (polycystin 2, transient receptor potential cation channel), a nonselective cation channel permeable to Ca2+ that belongs to the family of transient receptor potential channels, is required for autophagy in multiple cell types by a mechanism that remains unclear. Here, we report that PKD2 forms a protein complex with BECN1 (beclin 1), a key protein required for the formation of autophagic vacuoles, by acting as a scaffold that interacts with several co-modulators via its coiled-coil domain (CCD). Our data identified a physical and functional interaction between PKD2 and BECN1, which depends on one out of two CCD domains (CC1), located in the carboxy-terminal tail of PKD2. In addition, depletion of intracellular Ca2+ with BAPTA-AM not only blunted starvation-induced autophagy but also disrupted the PKD2-BECN1 complex. Consistently, PKD2 overexpression triggered autophagy by increasing its interaction with BECN1, while overexpression of PKD2D509V, a Ca2+ channel activity-deficient mutant, did not induce autophagy and manifested diminished interaction with BECN1. Our findings show that the PKD2-BECN1 complex is required for the induction of autophagy, and its formation depends on the presence of the CC1 domain of PKD2 and on intracellular Ca2+ mobilization by PKD2. These results provide new insights regarding the molecular mechanisms by which PKD2 controls autophagy.Abbreviations: ADPKD: autosomal dominant polycystic kidney disease; ATG: autophagy-related; ATG14/ATG14L: autophagy related 14; Baf A1: bafilomycin A1; BCL2/Bcl-2: BCL2 apoptosis regulator; BCL2L1/BCL-XL: BCL2 like 1; BECN1: beclin 1; CCD: coiled-coil domain; EBSS: Earle's balanced salt solution; ER: endoplasmic reticulum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GOLGA2/GM130: golgin A2; GST: glutathione s-transferase; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; NBR1: NBR1 autophagy cargo receptor; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PKD2/PC2: polycystin 2, transient receptor potential cation channel; RTN4/NOGO: reticulon 4; RUBCN/RUBICON: rubicon autophagy regulator; SQSTM1/p62: sequestosome 1; UVRAG: UV radiation resistance associated; WIPI2: WD repeat domain, phosphoinositide interacting 2.


Subject(s)
Autophagy , Beclin-1/physiology , TRPP Cation Channels/physiology , Beclin-1/metabolism , Blotting, Western , Fluorescent Antibody Technique , HEK293 Cells , HeLa Cells , Humans , Immunoprecipitation , TRPP Cation Channels/metabolism
4.
Cell Death Differ ; 27(9): 2586-2604, 2020 09.
Article in English | MEDLINE | ID: mdl-32152556

ABSTRACT

Angiotensin-(1-9) is a peptide from the noncanonical renin-angiotensin system with anti-hypertrophic effects in cardiomyocytes via an unknown mechanism. In the present study we aimed to elucidate it, basing us initially on previous work from our group and colleagues who proved a relationship between disturbances in mitochondrial morphology and calcium handling, associated with the setting of cardiac hypertrophy. Our first finding was that angiotensin-(1-9) can induce mitochondrial fusion through DRP1 phosphorylation. Secondly, angiotensin-(1-9) blocked mitochondrial fission and intracellular calcium dysregulation in a model of norepinephrine-induced cardiomyocyte hypertrophy, preventing the activation of the calcineurin/NFAT signaling pathway. To further investigate angiotensin-(1-9) anti-hypertrophic mechanism, we performed RNA-seq studies, identifying the upregulation of miR-129 under angiotensin-(1-9) treatment. miR-129 decreased the transcript levels of the protein kinase A inhibitor (PKIA), resulting in the activation of the protein kinase A (PKA) signaling pathway. Finally, we showed that PKA activity is necessary for the effects of angiotensin-(1-9) over mitochondrial dynamics, calcium handling and its anti-hypertrophic effects.


Subject(s)
Angiotensin I/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , MicroRNAs/metabolism , Mitochondrial Dynamics/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Peptide Fragments/pharmacology , Signal Transduction , Animals , Animals, Newborn , Calcium/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cytosol/metabolism , Dynamins/metabolism , Hypertrophy , MicroRNAs/genetics , Mitochondria/drug effects , Mitochondria/metabolism , Models, Biological , Myocytes, Cardiac/ultrastructure , NFATC Transcription Factors/metabolism , Norepinephrine/pharmacology , Phosphorylation/drug effects , Rats, Sprague-Dawley , Signal Transduction/drug effects , Up-Regulation/drug effects
5.
J Mol Cell Cardiol ; 118: 110-121, 2018 05.
Article in English | MEDLINE | ID: mdl-29518398

ABSTRACT

AIMS: Considerable evidence points to critical roles of intracellular Ca2+ homeostasis in the modulation and control of autophagic activity. Yet, underlying molecular mechanisms remain unknown. Mutations in the gene (pkd2) encoding polycystin-2 (PC2) are associated with autosomal dominant polycystic kidney disease (ADPKD), the most common inherited nephropathy. PC2 has been associated with impaired Ca2+ handling in cardiomyocytes and indirect evidence suggests that this protein may be involved in autophagic control. Here, we investigated the role for PC2 as an essential regulator of Ca2+ homeostasis and autophagy. METHODS AND RESULTS: Activation of autophagic flux triggered by mTOR inhibition either pharmacologically (rapamycin) or by means of nutrient depletion was suppressed in cells depleted of PC2. Moreover, cardiomyocyte-specific PC2 knockout mice (αMhc-cre;Pkd2F/F mice) manifested impaired autophagic flux in the setting of nutrient deprivation. Stress-induced autophagy was blunted by intracellular Ca2+ chelation using BAPTA-AM, whereas removal of extracellular Ca2+ had no effect, pointing to a role of intracellular Ca2+ homeostasis in stress-induced cardiomyocyte autophagy. To determine the link between stress-induced autophagy and PC2-induced Ca2+ mobilization, we over-expressed either wild-type PC2 (WT) or a Ca2+-channel deficient PC2 mutant (PC2-D509V). PC2 over-expression increased autophagic flux, whereas PC2-D509V expression did not. Importantly, autophagy induction triggered by PC2 over-expression was attenuated by BAPTA-AM, supporting a model of PC2-dependent control of autophagy through intracellular Ca2+. Furthermore, PC2 ablation was associated with impaired Ca2+ handling in cardiomyocytes marked by partial depletion of sarcoplasmic reticulum Ca2+ stores. Finally, we provide evidence that Ca2+-mediated autophagy elicited by PC2 is a mechanism conserved across multiple cell types. CONCLUSION: Together, this study unveils PC2 as a novel regulator of autophagy acting through control of intracellular Ca2+ homeostasis.


Subject(s)
Autophagy , Myocytes, Cardiac/metabolism , TRPP Cation Channels/metabolism , Animals , Autophagy/drug effects , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Calcium/metabolism , HeLa Cells , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice, Knockout , Myocytes, Cardiac/drug effects , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Signal Transduction/drug effects , Sirolimus/pharmacology , Stress, Mechanical
6.
Biochem Pharmacol ; 98(1): 92-101, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26297909

ABSTRACT

AIM: FK866 is an inhibitor of the NAD(+) synthesis rate-limiting enzyme nicotinamide phosphoribosyltransferase (NAMPT). Using FK866 to target NAD(+) synthesis has been proposed as a treatment for inflammatory diseases and cancer. However, use of FK866 may pose cardiovascular risks, as NAMPT expression is decreased in various cardiomyopathies, with low NAD(+) levels playing an important role in cardiovascular disease progression. In addition, low NAD(+) levels are associated with cardiovascular risk conditions such as aging, dyslipidemia, and type II diabetes mellitus. The aim of this work was to study the effects of FK866-induced NAD(+) depletion on mitochondrial metabolism and adaptive stress responses in cardiomyocytes. METHODS AND RESULTS: FK866 was used to deplete NAD(+) levels in cultured rat cardiomyocytes. Cell viability, mitochondrial metabolism, and adaptive responses to insulin, norepinephrine, and H2O2 were assessed in cardiomyocytes. The drop in NAD(+) induced by FK866 decreased mitochondrial metabolism without changing cell viability. Insulin-stimulated Akt phosphorylation, glucose uptake, and H2O2-survival were compromised by FK866. Glycolytic gene transcription was increased, whereas cardiomyocyte hypertrophy induced by norepinephrine was prevented. Restoring NAD(+) levels via nicotinamide mononucleotide administration reestablished mitochondrial metabolism and adaptive stress responses. CONCLUSION: This work shows that FK866 compromises mitochondrial metabolism and the adaptive response of cardiomyocytes to norepinephrine, H2O2, and insulin.


Subject(s)
Acrylamides/pharmacology , Mitochondria/drug effects , Myocytes, Cardiac/drug effects , Piperidines/pharmacology , Stress, Physiological/drug effects , Animals , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation/drug effects , Hydrogen Peroxide , Insulin/metabolism , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , NAD/metabolism , Nicotinamide Mononucleotide , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Phosphoribosyltransferase/metabolism , Norepinephrine/pharmacology , Rats
7.
Cell Commun Signal ; 12: 68, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25376904

ABSTRACT

BACKGROUND: Cardiac hypertrophy is characterized by alterations in both cardiac bioenergetics and insulin sensitivity. Insulin promotes glucose uptake by cardiomyocytes and its use as a substrate for glycolysis and mitochondrial oxidation in order to maintain the high cardiac energy demands. Insulin stimulates Ca(2+) release from the endoplasmic reticulum, however, how this translates to changes in mitochondrial metabolism in either healthy or hypertrophic cardiomyocytes is not fully understood. RESULTS: In the present study we investigated insulin-dependent mitochondrial Ca(2+) signaling in normal and norepinephrine or insulin like growth factor-1-induced hypertrophic cardiomyocytes. Using mitochondrion-selective Ca(2+)-fluorescent probes we showed that insulin increases mitochondrial Ca(2+) levels. This signal was inhibited by the pharmacological blockade of either the inositol 1,4,5-triphosphate receptor or the mitochondrial Ca(2+) uniporter, as well as by siRNA-dependent mitochondrial Ca(2+) uniporter knockdown. Norepinephrine-stimulated cardiomyocytes showed a significant decrease in endoplasmic reticulum-mitochondrial contacts compared to either control or insulin like growth factor-1-stimulated cells. This resulted in a reduction in mitochondrial Ca(2+) uptake, Akt activation, glucose uptake and oxygen consumption in response to insulin. Blocking mitochondrial Ca(2+) uptake was sufficient to mimic the effect of norepinephrine-induced cardiomyocyte hypertrophy on insulin signaling. CONCLUSIONS: Mitochondrial Ca(2+) uptake is a key event in insulin signaling and metabolism in cardiomyocytes.


Subject(s)
Calcium/metabolism , Cardiomegaly/metabolism , Insulin/metabolism , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , Animals , Animals, Newborn , Calcium Signaling , Endoplasmic Reticulum/metabolism , Glucose/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Oxygen Consumption , Rats, Sprague-Dawley , Signal Transduction
8.
Biochem Biophys Res Commun ; 446(1): 410-6, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24613839

ABSTRACT

Incretin GLP-1 has important metabolic effects on several tissues, mainly through the regulation of glucose uptake and usage. One mechanism for increasing cell metabolism is modulating endoplasmic reticulum (ER)-mitochondria communication, as it allows for a more efficient transfer of Ca(2+) into the mitochondria, thereby increasing activity. Control of glucose metabolism is essential for proper vascular smooth muscle cell (VSMC) function. GLP-1 has been shown to produce varied metabolic actions, but whether it regulates glucose metabolism in VSMC remains unknown. In this report, we show that GLP-1 increases mitochondrial activity in the aortic cell line A7r5 by increasing ER-mitochondria coupling. GLP-1 increases intracellular glucose and diminishes glucose uptake without altering glycogen content. ATP, mitochondrial potential and oxygen consumption increase at 3h of GLP-1 treatment, paralleled by increased Ca(2+) transfer from the ER to the mitochondria. Furthermore, GLP-1 increases levels of Mitofusin-2 (Mfn2), an ER-mitochondria tethering protein, via a PKA-dependent mechanism. Accordingly, PKA inhibition and Mfn2 down-regulation prevented mitochondrial Ca(2+) increases in GLP-1 treated cells. Inhibiting both Ca(2+) release from the ER and Ca(2+) entry into mitochondria as well as diminishing Mfn2 levels blunted the increase in mitochondrial activity in response to GLP-1. Altogether, these results strongly suggest that GLP-1 increases ER-mitochondria communication in VSMC, resulting in higher mitochondrial activity.


Subject(s)
Endoplasmic Reticulum/metabolism , Glucagon-Like Peptide 1/metabolism , Mitochondria/metabolism , Myocytes, Smooth Muscle/metabolism , Adenosine Triphosphate/metabolism , Animals , Calcium/metabolism , Cell Line , Cyclic AMP-Dependent Protein Kinases/metabolism , GTP Phosphohydrolases , Glucagon-Like Peptide-1 Receptor , Glucose/metabolism , Glycogen/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Rats , Receptors, Glucagon/genetics , Receptors, Glucagon/metabolism
9.
J Cell Biochem ; 115(4): 712-20, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24243530

ABSTRACT

In the heart, insulin-like growth factor-1 (IGF-1) is a peptide with pro-hypertrophic and anti-apoptotic actions. The pro-hypertrophic properties of IGF-1 have been attributed to the extracellular regulated kinase (ERK) pathway. Recently, we reported that IGF-1 also increases intracellular Ca(2+) levels through a pertussis toxin (PTX)-sensitive G protein. Here we investigate whether this Ca(2+) signal is involved in IGF-1-induced cardiomyocyte hypertrophy. Our results show that the IGF-1-induced increase in Ca(2+) level is abolished by the IGF-1 receptor tyrosine kinase inhibitor AG538, PTX and the peptide inhibitor of Gßγ signaling, ßARKct. Increases in the activities of Ca(2+) -dependent enzymes calcineurin, calmodulin kinase II (CaMKII), and protein kinase Cα (PKCα) were observed at 5 min after IGF-1 exposure. AG538, PTX, ßARKct, and the dominant negative PKCα prevented the IGF-1-dependent phosphorylation of ERK1/2. Participation of calcineurin and CaMKII in ERK phosphorylation was discounted. IGF-1-induced cardiomyocyte hypertrophy, determined by cell size and ß-myosin heavy chain (ß-MHC), was prevented by AG538, PTX, ßARKct, dominant negative PKCα, and the MEK1/2 inhibitor PD98059. Inhibition of calcineurin with CAIN did not abolish IGF-1-induced cardiac hypertrophy. We conclude that IGF-1 induces hypertrophy in cultured cardiomyocytes by activation of the receptor tyrosine kinase activity/ßγ-subunits of a PTX-sensitive G protein/Ca(2+) /PKCα/ERK pathway without the participation of calcineurin.


Subject(s)
Calcium/metabolism , Cardiomegaly/metabolism , Heterotrimeric GTP-Binding Proteins/metabolism , Insulin-Like Growth Factor I/metabolism , Myocytes, Cardiac/pathology , Animals , Calcineurin/genetics , Calcineurin/metabolism , Calcium Signaling/drug effects , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cardiomegaly/chemically induced , Cardiomegaly/pathology , Catechols/pharmacology , Cells, Cultured , Extracellular Signal-Regulated MAP Kinases/metabolism , Insulin-Like Growth Factor I/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Peptides/genetics , Phosphorylation/drug effects , Protein Kinase C-alpha/metabolism , Protein Subunits , Rats, Sprague-Dawley , Receptor, IGF Type 1/antagonists & inhibitors , Receptor, IGF Type 1/metabolism , Recombinant Proteins/genetics , Tyrphostins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...