Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 3339, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37286534

ABSTRACT

Optical solitary waves (solitons) that interact in a nonlinear system can bind and form a structure similar to a molecule. The rich dynamics of this process have created a demand for rapid spectral characterization to deepen the understanding of soliton physics with many practical implications. Here, we demonstrate stroboscopic, two-photon imaging of soliton molecules (SM) with completely unsynchronized lasers, where the wavelength and bandwidth constraints are considerably eased compared to conventional imaging techniques. Two-photon detection enables the probe and tested oscillator to operate at completely different wavelengths, which permits mature near-infrared laser technology to be leveraged for rapid SM studies of emerging long-wavelength laser sources. As a demonstration, using a 1550 nm probe laser we image the behavior of soliton singlets across the 1800-2100 nm range, and capture the rich dynamics of evolving multiatomic SM. This technique may prove to be an essential, easy-to-implement diagnostic tool for detecting the presence of loosely-bound SM, which often remain unnoticed due to instrumental resolution or bandwidth limitations.

2.
Opt Lett ; 47(7): 1762-1765, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35363729

ABSTRACT

We report on the first, to the best of our knowledge, solid-state dual-comb mode-locked laser that simultaneously operates in different dispersion regimes. Due to the intrinsic polarization multiplexing in a birefringent Yb:Ca3NbGa3Si2O14 (Yb:CNGS) gain medium, the laser emits two cross-polarized pulse trains with a repetition rate offset of ∼ 4.8 kHz from a single cavity. We obtain dual pulse generation with a 20-fold difference in duration by setting the net cavity group delay dispersion to cross zero across the emission band of the employed gain medium. While the duration of the soliton-like pulses experiencing anomalous dispersion amounts to 117 fs, the second laser output, which is spectrally located in the normal dispersion region, is strongly chirped with a pulse duration of 2360 fs.

3.
Opt Express ; 29(16): 26127-26136, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34614925

ABSTRACT

We propose a unique way to design multipass cells (MPCs), which combines cost-efficient spherical mirrors with the high-density pattern of astigmatic mirrors. Such functionality was accomplished using at least three standard spherical mirrors appropriately tilted, which breaks the parallelism between them. A genetic algorithm (GA) supported the cell configuration optimization. A 16 m and 23.8 m optical path length (OPL) MPC was developed, practically realized, and proved by a time-of-flight (TOF) experiment to demonstrate the principle. Finally, CO2 detection at 2004nm obtaining 0.4 ppmv limit of detection (LOD) using wavelength modulation spectroscopy (WMS) with 10 s averaging was performed.

4.
Opt Lett ; 45(5): 1280, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32108825

ABSTRACT

This publisher's note contains corrections to Opt. Lett.45, 956 (2020)OPLEDP0146-959210.1364/OL.383788.

5.
Opt Lett ; 45(4): 956-959, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-32058516

ABSTRACT

We present a versatile ultrafast holmium-doped fiber laser with an intracavity Martinez compressor. The compressor enables continuous dispersion control, spectral filtering, and dual-color operation of the laser. Mode locking is supported for net cavity dispersion values ranging from highly anomalous (-1.42ps2) to net normal (0.3ps2), and wavelength tuning of the optical solitons is obtained in a 2021-2096 nm span. Dual-color pulsed operation of the laser is reached by implementing a mechanical bandstop filter within the compressor. The repetition rate offset of the two emitted frequency combs can be tuned in a 3-8 kHz range by adjusting the net cavity dispersion, or by changing the beam block diameter. We show that a relatively simple fiber resonator integrated with a Martinez compressor can serve as a highly tunable laser source.

6.
Opt Express ; 27(26): 37435-37445, 2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31878523

ABSTRACT

A compact and robust all-fiber difference frequency generation-based source of broadband mid-infrared radiation is presented. The source emits tunable radiation in the range between 6.5 µm and 9 µm with an average output power up to 5 mW at 125 MHz repetition frequency. The all-in-fiber construction of the source along with active stabilization techniques results in long-term repetition rate stability of 3 Hz per 10 h and a standard deviation of the output power better than 0.8% per 1 h. The applicability of the presented source to laser spectroscopy is demonstrated by measuring the absorption spectrum of nitrous oxide (N2O) around 7.8 µm. The robustness and good long- and short-term stability of the source opens up for applications outside the laboratory.

7.
Sci Rep ; 9(1): 12313, 2019 Aug 23.
Article in English | MEDLINE | ID: mdl-31444393

ABSTRACT

We report the generation of coherent octave-spanning supercontinuum in an all-fiber system, without any free-space optical components. The setup uses the femtosecond fiber laser as a pump and an all-normal dispersion microstructured fiber as a medium for supercontinuum generation. The generated spectrum is characterized both experimentally and numerically and shows a broad bandwidth (1.1-2.2 µm), a high signal to noise ratio reaching 100 at maximum, a high coherence (closing to 1), linear polarization and average output power up to 57 mW. The source is characterized by exceptional simplicity and does not require any alignment (the nonlinear fiber is spliced to the pump) which finally opens the path to outside-lab applications of supercontinuum radiation.

8.
Opt Express ; 27(8): 11361-11369, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-31052981

ABSTRACT

In 2003, carbon nanotubes opened a new field of research on nanomaterial-based mode-locked fiber lasers. They maintain popularity in the ultrafast laser community due to their broadband operation, relatively high damage threshold, and tunable optical properties. Here we show that metallic carbon nanotube-based thin film fabricated by vacuum filtration technique can be used as a saturable absorber in holmium-doped fiber laser operating in anomalous and normal dispersion regimes. Scaling the absorbers modulation depth by adjusting the film thickness was observed. The Fourier transform limited 6.65 nm wide optical solitons in anomalous dispersion regime were generated. Utilizing stretched-pulse regime greatly improves the laser performance - 212 fs pulses reach the energy of 3.79 nJ.

9.
Opt Express ; 27(2): 590-596, 2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30696143

ABSTRACT

We report on mode-locking of an Yb:Ca3NbGa3Si2O14 laser, which is pumped by a fiber-coupled single-mode laser diode. The shortest pulse duration obtained with a semiconductor saturable absorber mirror is 52 fs, with 75 mW of average output power. Sub-60 fs operation tunable between 1055 and 1074 nm is achieved by employing semiconductor absorbers with different characteristics. We also demonstrate passive mode-locking results with transmissive graphene saturable absorber, reaching an 85 fs pulse duration with 23 mW output power. Moreover, we present the non-phase-matched self-frequency doubling properties of this non-centrosymmetric crystal in the femtosecond regime.

10.
Opt Lett ; 43(20): 5154-5157, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30320843

ABSTRACT

We demonstrate a mode-locked (ML) femtosecond laser based on the disordered garnet crystal Tm,Ho:CNGG. Employing a single-walled carbon nanotube saturable absorber, pulses as short as 83 and 76 fs at 2081 nm are achieved without and with external compression, respectively. The latter represents, to the best of our knowledge, the shortest pulse duration obtained from any Ho-doped or Tm,Ho-codoped laser. The average power amounts to 67 mW at a repetition rate of 102 MHz. By analyzing the soliton ML regime, the nonlinear refractive index of Tm,Ho:CNGG is estimated to be ∼1.1×10-19 m2/W.

11.
Opt Express ; 26(9): 11756-11763, 2018 Apr 30.
Article in English | MEDLINE | ID: mdl-29716094

ABSTRACT

We report the first fully fiberized difference frequency generation (DFG) source, delivering a broadly tunable idler in the 6 to 9 µm spectral range, using an orientation-patterned gallium phosphide (OP-GaP) crystals with different quasi-phase matching periods (QPM). The mid-infrared radiation (MIR) is obtained via mixing of the output of a graphene-based Er-doped fiber laser at 1.55 µm with coherent frequency-shifted solitons at 1.9 µm generated in a highly nonlinear fiber using the same seed. The presented setup is the first truly all-fiber, all-polarization maintaining, alignment-free DFG source reported so far. Its application to laser spectroscopy was demonstrated by the absorption spectrum measurement of ν4 band of methane in 7.5 - 8.3 µm spectral range. The system simplicity and compactness paves the way for applications in field-deployable optical frequency comb spectroscopy systems for gas sensing.

12.
Opt Lett ; 43(1): 38-41, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29328191

ABSTRACT

In this Letter, we demonstrate an all-fiber holmium-doped laser operating in the stretched-pulse regime. As a result of dispersion management, the laser is capable of generating 190 fs pulses with a bandwidth of 53.6 nm. The pulses centered at 2060 nm reach 2.55 nJ of energy. Mode-locking is achieved with a multilayer graphene saturable absorber (SA). The Letter also presents the measurement of group velocity dispersion of active (Nufern SM-HDF-10/130), passive (SMF28), and dispersion-compensating (Nufern UHNA4) fibers in a 1.8-2.1 µm range. To the best of our knowledge, this is the first report on an all-fiber, stretched-pulse laser operating beyond 2 µm with nanomaterial-based SA.

13.
Opt Express ; 25(21): 26289-26295, 2017 Oct 16.
Article in English | MEDLINE | ID: mdl-29041287

ABSTRACT

We demonstrate a high peak power mode-locked Yb:CaF2 oscillator pumped by a single-mode laser diode. The laser operated in hybrid Kerr-lens and SESAM mode-locked regime. Its performance was optimized by varying the output coupler ratio. Pulses as short as 65 fs were generated with 0.4% transmission. Employing 5% output coupler enabled generation of 77 fs pulses with 46 kW of peak power (262 mW of average output power). We believe that such high peak powers can open a way to practical applications of single-mode diode-pumped ultrafast ytterbium lasers.

14.
Sci Rep ; 7(1): 7428, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28785047

ABSTRACT

Due to their broadband nonlinear optical properties, low-dimensional materials are widely used for pulse generation in fiber and solid-state lasers. Here we demonstrate novel materials, Bi2Te2Se (BTS) and Sn-doped Bi2Te2Se (BSTS), which can be used as a universal saturable absorbers for distinct spectral regimes. The material was mechanically exfoliated from a bulk single-crystal and deposited onto a side-polished fiber. We have performed characterization of the fabricated devices and employed them in polarization-maintaining ytterbium- and erbium-doped fiber lasers. This enabled us to obtain self-starting passively Q-switched regime at 1 µm and 1.56 µm. The oscillators emitted stable, linearly polarized radiation with the highest single pulse energy approaching 692 nJ. Both lasers are characterized by the best performance observed in all-polarization maintaining Q-switched fiber lasers with recently investigated new saturable absorbers, which was enabled by a very high damage threshold of the devices. This demonstrates the great potential of the investigated materials for the ultrafast photonics community.

15.
Opt Express ; 25(15): 16916-16921, 2017 Jul 24.
Article in English | MEDLINE | ID: mdl-28789191

ABSTRACT

We report mode-locking in holmium-doped all-fiber laser based on black phosphorus saturable absorber. The generated solitons are centered at 2094 nm with bandwidth reaching 4.2 nm and pulse duration of 1.3 ps. In harmonic mode-locking, up to 10th harmonic (290 MHz) was obtained. Properties of black phosphorus saturable absorber are investigated. Our findings validate black phosphorus suitability for ultrafast applications in mid-infrared.

16.
Sci Rep ; 7: 45491, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28368014

ABSTRACT

In this work, we demonstrate a comprehensive study on the nonlinear parameters of carbon nanotube (CNT) saturable absorbers (SA) as a function of the nanotube film thickness. We have fabricated a set of four saturable absorbers with different CNT thickness, ranging from 50 to 200 nm. The CNTs were fabricated via a vacuum filtration technique and deposited on fiber connector end facets. Each SA was characterized in terms of nonlinear transmittance (i.e. optical modulation depth) and tested in a Thulium-doped fiber laser. We show, that increasing the thickness of the CNT layer significantly increases the modulation depth (up to 17.3% with 200 nm thick layer), which strongly influences the central wavelength of the laser, but moderately affects the pulse duration. It means, that choosing the SA with defined CNT thickness might be an efficient method for wavelength-tuning of the laser, without degrading the pulse duration. In our setup, the best performance in terms of bandwidth and pulse duration (8.5 nm and 501 fs, respectively) were obtained with 100 nm thick CNT layer. This is also, to our knowledge, the first demonstration of a fully polarization-maintaining mode-locked Tm-doped laser based on CNT saturable absorber.

17.
Opt Lett ; 42(8): 1592-1595, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-28409806

ABSTRACT

In this Letter, we demonstrate an all-polarization-maintaining, stretched-pulse Tm-doped fiber laser generating ∼200 fs pulses centered at 1945 nm. As a saturable absorber, a graphene/poly(methyl methacrylate) composite was used. To the best of our knowledge, this is the first demonstration of stretched-pulse operation of a graphene-based fiber laser at 2 µm.

18.
Opt Lett ; 41(21): 4995-4998, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27805668

ABSTRACT

The first demonstration of a compact all-fiber figure-9 double-clad erbium-ytterbium laser working in the dissipative soliton resonance (DSR) regime is presented. Mode-locking was achieved using a nonlinear amplifying loop (NALM) resonator configuration. The laser was assembled with an additional 475 m long spool of SMF28 fiber in the NALM loop in order to obtain large net-anomalous cavity dispersion (-10.4 ps2), and therefore ensure that DSR would be the dominant mode-locking mechanism. At maximum pump power (4.78 W) the laser generated rectangular-shaped pulses with 455 ns duration and an average power of 950 mW, which at a repetition frequency of 412 kHz corresponds to a record energy of 2.3 µJ per pulse.

19.
Opt Express ; 24(18): 20359-64, 2016 Sep 05.
Article in English | MEDLINE | ID: mdl-27607642

ABSTRACT

We report on the generation of noise-like pulse (NLP) trains in a Tm-doped fiber laser mode-locked by multilayer graphene saturable absorber. The spectral bandwidth obtained directly from the oscillator exceeds 60 nm, centered at 1950 nm, with 23.5 MHz repetition rate. The pulses were also amplified in a fully fiberized amplifier based on a double-cladding Tm-doped fiber. The system was capable of delivering 1.21 W of average power, which corresponds to 51.5 nJ energy stored in the noise-like bundle. We believe that the presented source might serve as a pump for supercontinuum generation in highly nonlinear fibers.

20.
Opt Lett ; 41(11): 2592-5, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27244422

ABSTRACT

In this Letter, we demonstrate a graphene mode-locked, all-fiber Ho-doped fiber laser generating 1.3 nJ energy pulses directly from the oscillator. The graphene used as a saturable absorber was obtained via chemical vapor deposition on copper substrate and immersed in a poly(methyl methacrylate) support. The laser generated ultrashort soliton pulses at 2080 nm with bandwidth up to 6.1 nm. The influence of the output coupling ratio and the SA modulation depth on the mode-locking performance was also investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...