Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(2): 028101, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36706389

ABSTRACT

In this Letter, we study the interaction between a self-sustaining exothermic reaction front propagating in a direction perpendicular to that of gravity and the buoyancy-driven convective flow during frontal polymerization (FP) of a low-viscosity monomer resin. As the polymerization front transforms the liquid monomer into the solid polymer, the large thermal gradients associated with the propagating front sustain a natural convection of the fluid ahead of the front. The fluid convection in turn affects the reaction-diffusion (RD) dynamics and the shape of the front. Detailed multiphysics numerical analyses and particle image velocimetry experiments reveal this coupling between natural convection and frontal polymerization. The frontal Rayleigh (Ra) number affects the magnitude of the velocity field and the inclination of the front. A higher Ra number drives instability during FP, leading to the observation of thermal-chemical patterns with tunable wavelengths and magnitudes.

2.
Sci Rep ; 9(1): 17773, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31780720

ABSTRACT

Structural polymeric materials incorporating a microencapsulated liquid healing agent demonstrate the ability to autonomously heal cracks. Understanding how an advancing crack interacts with the microcapsules is critical to optimizing performance through tailoring the size, distribution and density of these capsules. For the first time, time-lapse synchrotron X-ray phase contrast computed tomography (CT) has been used to observe in three-dimensions (3D) the dynamic process of crack growth, microcapsule rupture and progressive release of solvent into a crack as it propagates and widens, providing unique insights into the activation and repair process. In this epoxy self-healing material, 150 µm diameter microcapsules within 400 µm of the crack plane are found to rupture and contribute to the healing process, their discharge quantified as a function of crack propagation and distance from the crack plane. Significantly, continued release of solvent takes place to repair the crack as it grows and progressively widens.

3.
Science ; 344(6184): 620-3, 2014 May 09.
Article in English | MEDLINE | ID: mdl-24812399

ABSTRACT

The regenerative power of tissues and organs in biology has no analog in synthetic materials. Although self-healing of microscopic defects has been demonstrated, the regrowth of material lost through catastrophic damage requires a regenerative-like approach. We demonstrate a vascular synthetic system that restores mechanical performance in response to large-scale damage. Gap-filling scaffolds are created through a two-stage polymer chemistry that initially forms a shape-conforming dynamic gel but later polymerizes to a solid structural polymer with robust mechanical properties. Through the control of reaction kinetics and vascular delivery rate, we filled impacted regions that exceed 35 mm in diameter within 20 min and restored mechanical function within 3 hours. After restoration of impact damage, 62% of the total absorbed energy was recovered in comparison with that in initial impact tests.


Subject(s)
Polymerization , Polymers/chemistry , Regeneration , Gels/chemistry , Kinetics , Mechanical Phenomena , Models, Chemical
4.
J Microencapsul ; 31(4): 350-4, 2014.
Article in English | MEDLINE | ID: mdl-24495196

ABSTRACT

Microcapsules containing a liquid metal alloy core of gallium-indium (Ga-In) are prepared via in situ urea-formaldehyde (UF) microencapsulation. The capsule size, shape, thermal properties, and shell wall thickness are investigated. We prepare ellipsoidal capsules with major and minor diameter aspect ratios ranging from 1.64 to 1.08 and with major diameters ranging from 245 µm to 3 µm. We observe that as the capsule major diameter decreases, the aspect ratio approaches 1. The thermal properties of the prepared microcapsules are investigated by thermogravimetric (TGA) and differential scanning calorimetry (DSC). Microcapsules are shown to survive incorporation into an epoxy matrix and to trigger via mechanical damage to the cured matrix. Microcapsules containing liquid metal cores may have diverse applications ranging from self-healing to contrast enhancement or the demonstration of mechano-adaptive circuitry.


Subject(s)
Alloys/chemistry , Formaldehyde/chemistry , Gallium/chemistry , Indium/chemistry , Urea/chemistry , Capsules/chemical synthesis , Capsules/chemistry
5.
J R Soc Interface ; 9(70): 1020-8, 2012 May 07.
Article in English | MEDLINE | ID: mdl-21957119

ABSTRACT

An emerging strategy for creating self-healing materials relies on embedded vascular networks of microchannels to transport reactive fluids to regions of damage. Here we investigate the use of active pumping for the pressurized delivery of a two-part healing system, allowing a small vascular system to deliver large volumes of healing agent. Different pumping strategies are explored to improve the mixing and subsequent polymerization of healing agents in the damage zone. Significant improvements in the number of healing cycles and in the overall healing efficiency are achieved compared with prior passive schemes that use only capillary forces for the delivery of healing agents. At the same time, the volume of the vascular system required to achieve this superior healing performance is significantly reduced. In the best case, nearly full recovery of fracture toughness is attained throughout 15 cycles of damage and healing, with a vascular network constituting just 0.1 vol% of the specimen.


Subject(s)
Biomimetic Materials/chemistry , Materials Testing/methods , Pressure , Biocompatible Materials/chemistry , Polymers , Wound Healing
6.
J R Soc Interface ; 4(13): 395-403, 2007 Apr 22.
Article in English | MEDLINE | ID: mdl-17251129

ABSTRACT

Self-healing polymers, based on microencapsulated dicyclopentadiene and Grubbs' catalyst embedded in the polymer matrix, are capable of responding to propagating fatigue cracks by autonomic processes that lead to higher endurance limits and life extension, or even the complete arrest of the crack growth. The amount of fatigue-life extension depends on the relative magnitude of the mechanical kinetics of crack propagation and the chemical kinetics of healing. As the healing kinetics are accelerated, greater fatigue life extension is achieved. The use of wax-protected, recrystallized Grubbs' catalyst leads to a fourfold increase in the rate of polymerization of bulk dicyclopentadiene and extends the fatigue life of a polymer specimen over 30 times longer than a comparable non-healing specimen. The fatigue life of polymers under extremely fast fatigue crack growth can be extended through the incorporation of periodic rest periods, effectively training the self-healing polymeric material to achieve higher endurance limits.


Subject(s)
Biocompatible Materials/chemistry , Indenes/chemistry , Materials Testing , Polymers/chemistry , Compressive Strength , Stress, Mechanical
7.
J Microencapsul ; 20(6): 719-30, 2003.
Article in English | MEDLINE | ID: mdl-14594661

ABSTRACT

Microencapsulated healing agents that possess adequate strength, long shelf-life and excellent bonding to the host material are required for self-healing materials. Urea-formaldehyde microcapsules containing dicyclopentadiene were prepared by in situ polymerization in an oil-in-water emulsion that meet these requirements for self-healing epoxy. Microcapsules of 10-1000 microm in diameter were produced by appropriate selection of agitation rate in the range of 200-2000 rpm. A linear relation exists between log(mean diameter) and log(agitation rate). Surface morphology and shell wall thickness were investigated by optical and electron microscopy. Microcapsules are composed of a smooth 160-220 nm inner membrane and a rough, porous outer surface of agglomerated urea-formaldehyde nanoparticles. Surface morphology is influenced by pH of the reacting emulsion and interfacial surface area at the core-water interface. High yields (80-90%) of a free flowing powder of spherical microcapsules were produced with a fill content of 83-92 wt% as determined by CHN analysis.


Subject(s)
Formaldehyde , Indenes/administration & dosage , Urea , Capsules/therapeutic use , Drug Compounding/methods , Drug Stability , Emulsions/therapeutic use , Humans , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning/methods , Particle Size , Powders , Surface Properties , Wound Healing/drug effects
8.
Nature ; 409(6822): 794-7, 2001 Feb 15.
Article in English | MEDLINE | ID: mdl-11236987

ABSTRACT

Structural polymers are susceptible to damage in the form of cracks, which form deep within the structure where detection is difficult and repair is almost impossible. Cracking leads to mechanical degradation of fibre-reinforced polymer composites; in microelectronic polymeric components it can also lead to electrical failure. Microcracking induced by thermal and mechanical fatigue is also a long-standing problem in polymer adhesives. Regardless of the application, once cracks have formed within polymeric materials, the integrity of the structure is significantly compromised. Experiments exploring the concept of self-repair have been previously reported, but the only successful crack-healing methods that have been reported so far require some form of manual intervention. Here we report a structural polymeric material with the ability to autonomically heal cracks. The material incorporates a microencapsulated healing agent that is released upon crack intrusion. Polymerization of the healing agent is then triggered by contact with an embedded catalyst, bonding the crack faces. Our fracture experiments yield as much as 75% recovery in toughness, and we expect that our approach will be applicable to other brittle materials systems (including ceramics and glasses).

SELECTION OF CITATIONS
SEARCH DETAIL
...