Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Int J Biol Macromol ; 261(Pt 1): 129700, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278395

ABSTRACT

The exceptional antioxidant properties of beetroot (BR) and the cancer antiproliferative effects of chitosan nanoparticles (CS NP) have led to the synthesis of a BR@CS nanocomposite (NC) in this study. The novel BR@CS NC was applied to human epithelial colorectal adenocarcinoma (Caco-2), human epithelial ductal breast carcinoma (T-47D), and human epithelial lung carcinoma (A549) cells. SEM characterization of CS NP revealed a variety of particle shapes ranging from 20 to 58 nm in diameter. UV-VIS analysis confirmed the formation of the BR@CS NC, while FTIR analysis demonstrated strong hydrogen bonds between CS NP and BR. These bonds reduced the positive surface charge of CS NP, as indicated by zeta potential analysis. When applied to cancer cell lines at a concentration of 250 µg/mL, the BR@CS NC successfully eradicated 89 % of A549, 88 % of T-47D, and 83 % of Caco-2 cell lines. The cell death mode exhibited extensive, apoptotic, and massive necrotic changes in all cell lines treated with BR@CS NC. Caspase 3 (CasP3) and P53 levels were elevated in BR@CS NC-treated cells. This study merges BR's antioxidant and anti-inflammatory properties with the antiangiogenic mechanism and inhibition of tumors by CS NP, resulting in a unique and innovative strategy for cancer treatment.


Subject(s)
Chitosan , Nanocomposites , Nanoparticles , Neoplasms , Humans , Chitosan/chemistry , Caco-2 Cells , Antioxidants/pharmacology , Nanoparticles/chemistry , Nanocomposites/chemistry
2.
Future Med Chem ; 15(22): 2065-2086, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37955128

ABSTRACT

Background: VEGFR-2 is a key regulator of cancer cell proliferation, migration and angiogenesis. Aim: Development of thieno[2,3-d]pyrimidine derivatives as potential anti-cancer agents targeting VEGFR-2. Methods: Seven in vitro and nine in silico studies were conducted. Results: Compound 10d demonstrated strong anticancer potential, boosting apoptosis based on VEGFR-2 inhibition. It arrested the S phase of the cell cycle and upregulated the apoptotic factors. Docking and molecular dynamics simulation studies confirm the stability of the VEGFR-2-10d complex and suggest that these compounds have good binding affinities to VEGFR-2. In addition, the drug-likeness was confirmed. Conclusion: Thieno[2,3-d]pyrimidines, particularly compound 10d, has good anticancer effects and may contribute to the development of new anticancer therapies.

3.
Mol Divers ; 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37925643

ABSTRACT

Marburg virus disease (MVD) is caused by the Marburg virus, a one-of-a-kind zoonotic RNA virus from the genus Filovirus. Thus, this current study employed AI-based QSAR and molecular docking-based virtual screening for identifying potential binders against the target protein (nucleoprotein (NP)) of the Marburg virus. A total of 2727 phytochemicals were used for screening, out of which the top three compounds (74977521, 90470472, and 11953909) were identified based on their predicted bioactivity (pIC50) and binding score (< - 7.4 kcal/mol). Later, MD simulation in triplicates and trajectory analysis were performed which showed that 11953909 and 74977521 had the most stable and consistent complex formations and had the most significant interactions with the highest number of hydrogen bonds. PCA (principal component analysis) and FEL (free energy landscape) analysis indicated that these compounds had favourable energy states for most of the conformations. The total binding free energy of the compounds using the MM/GBSA technique showed that 11953909 (ΔGTOTAL = - 30.78 kcal/mol) and 74977521 (ΔGTOTAL = - 30 kcal/mol) had the highest binding affinity with the protein. Overall, this in silico pipeline proposed that the phytochemicals 11953909 and 74977521 could be the possible binders of NP. This study aimed to find phytochemicals inhibiting the protein's function and potentially treating MVD.

4.
Pathogens ; 12(10)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37887736

ABSTRACT

BACKGROUND AND AIM: Hepatocellular carcinoma (HCC) is a significant complication of hepatitis B and still poses a global public health concern. This systematic review and meta-analysis provide adequate details on the prevalence of HCC in the HBV population within Southeast Asian countries. METHOD: Following the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) criteria, a thorough search for literature discussing the prevalence of HCC in the HBV population within southeast Asia was performed. Eligible studies were subjected to a meta-analysis utilising a DerSimonian and Laird approach and a random effect model. A protocol was registered with PROSPERO (CRD42023423953). RESULT: Our study meticulously recovered 41 articles from seven countries in Southeast Asia, namely Cambodia, Indonesia, Malaysia, the Philippines, Singapore, Thailand, and Vietnam. A total of 39,050 HBV patients and 7479 HCC cases in southeast Asia were analysed. The pooled prevalence of HCC in HBV cases within southeast Asia was 45.8% (95% CI, 34.3-57.8%, I2 = 99.51%, p < 0.001). Singapore (62.5%, CI: 42.4-79.1) had the highest pooled prevalence of HCC in the HBV population compared to Vietnam, with the lowest estimate (22.4%, CI: 9.9-44.9). There was a drop in the pooled prevalence of HCC in HBV from 2016 until now (37.6%, CI: 19.2-60.5). CONCLUSION: The findings of this review reveal a high pooled prevalence of HCC in the HBV population and therefore stir the need for routine screening, management, and surveillance.

5.
Pathogens ; 12(9)2023 09 12.
Article in English | MEDLINE | ID: mdl-37764965

ABSTRACT

BACKGROUND: The protozoan parasite Toxoplasma gondii may cause serious illness in the immunocompromised. The Toxoplasma gondii seropositive prevalence in pregnant women in WHO Eastern Mediterranean Region countries is inconsistent in the literature and it is associated with outcomes that have not be fully elucidated, hence the need for a better understanding of the pooled seroprevalence and associated maternal and fetal outcomes. OBJECTIVE: The objective was to conduct a systematic literature review and determine the pooled prevalence of WHO Eastern Mediterranean Regional countries' pregnant women's seroprevalence of Toxoplasma gondii and the maternal-fetal outcomes. METHODS: This quantitative study examined WHO Eastern Mediterranean countries' maternal-fetal outcomes and Toxoplasma gondii prevalence in pregnant women. The targeted population was pregnant women, while the primary outcome was seropositivity of Toxoplasma gondii, while other outcomes such as maternal and fetal associations and risk factors were determined PubMed, SCOPUS, MEDLINE, and Index Medicus for the Eastern Mediterranean Region (IMEMR) databases were searched up until 30 January 2023. The search terms used were "Toxoplasma gondii" OR "Toxoplasma infection" AND "Pregnant woman" or pregnan* OR Antenatal OR Prenatal OR Gravidity OR Parturition OR Maternal AND WHO Eastern Mediterranean Region). OpenMeta-Analyst and Jamovi were used to analyze the generated data. RESULTS: In total, 95 of 2947 articles meeting the inclusion criteria examined Toxoplasma gondii prevalence in pregnant women from WHO Eastern Mediterranean countries. The pooled prevalence of Toxoplasma gondii in pregnant women was 36.5% (95%CI: 32.6-40.4) with a median value of 35.64%, range values of 1.38-75.30%, with 99.61% heterogeneity. The pooled seroprevalence of IgG of Toxoplasma gondii was 33.5% (95%CI: 29.8-37.2) with a median value of 33.51%, and a range values of 1.38-69.92%; the pooled seroprevalence of IgM was 3.6% (95%CI: 3.1-4.1)) with a median value of 3.62 and range values of 0.20-17.47%, while cases of pooled seroprevalence of both IgG and IgM positivity was 3.0% (95%CI: 1.9-4.4) with a median value of 2.05 and a range values of 0.05-16.62%. Of the Toxoplasma gondii seropositive women, 1281/3389 (34.8%) 174/1765 (32.9%), 1311/3101 (43.7%), and 715/1683 (40.8%) of them had contact with cats, drank unprocessed milk, ate raw or undercooked meat and ate unwashed raw vegetables, respectively. The maternal-fetal outcomes associated with Toxoplasma gondii seropositivity were a history of abortions, miscarriage, stillbirth, intrauterine fetal death, and premature birth, which were found in 868/2990 (32.5%), 112/300 (36.1%), 111/375 (25.7%), 3/157 (1.9%) and 96/362 (20.1%) of women who tested positive for Toxoplasma gondii antibodies. CONCLUSION: The study found a high proportion of Toxoplasma gondii seroprevalence in pregnant women in the WHO Eastern Mediterranean Region, which may be linked to poor outcomes for mothers and their babies. Thus, pregnant women require monitoring and comprehensive prevention strategies for Toxoplasma gondii infection.

6.
RSC Adv ; 13(33): 23365-23385, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37545598

ABSTRACT

In this work, new thieno[2,3-d]pyrimidine-derived compounds possessing potential anticancer activities were designed and synthesized to target VEGFR-2. The thieno[2,3-d]pyrimidine derivatives were tested in vitro for their abilities to inhibit VEGFR-2 and to prevent cancer cell growth in two types of cancer cells, MCF-7 and HepG2. Compound 18 exhibited the strongest anti-VEGFR-2 potential with an IC50 value of 0.084 µM. Additionally, it displayed excellent proliferative effects against MCF-7 and HepG2 cancer cell lines, with IC50 values of 10.17 µM and 24.47 µM, respectively. Further studies revealed that compound 18 induced cell cycle arrest in G2/M phase and promoted apoptosis in MCF-7 cancer cells. Apoptosis was stimulated by compound 18 by increasing BAX (3.6-fold) and decreasing Bcl-2 (3.1-fold). Additionally, compound 18 significantly raised the levels of caspase-8 (2.6-fold) and caspase-9 (5.4-fold). Computational techniques were also used to investigate the VEGFR-2-18 complex at a molecular level. Molecular docking and molecular dynamics simulations were performed to assess the structural and energetic features of the complex. The protein-ligand interaction profiler analysis identified the 3D interactions and binding conformation of the VEGFR-2-18 complex. Essential dynamics (ED) study utilizing principal component analysis (PCA) described the protein dynamics of the VEGFR-2-18 complex at various spatial scales. Bi-dimensional projection analysis confirmed the proper binding of the VEGFR-2-18 complex. In addition, the DFT studies provided insights into the structural and electronic properties of compound 18. Finally, computational ADMET and toxicity studies were conducted to evaluate the potential of the thieno[2,3-d]pyrimidine derivatives for drug development. The results of the study suggested that compound 18 could be a promising anticancer agent that may provide effective treatment options for cancer patients. Furthermore, the computational techniques used in this research provided valuable insights into the molecular interactions of the VEGFR-2-18 complex, which may guide future drug design efforts. Overall, this study highlights the potential of thieno[2,3-d]pyrimidine derivatives as a new class of anticancer agents and provides a foundation for further research in this area.

7.
Comput Biol Chem ; 106: 107928, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37480629

ABSTRACT

In this study, new thieno[2,3-d]pyrimidine derivatives that could have potential anticancer activity by inhibiting the VEGFR-2 receptor have been designed, synthesized, and investigated. The thieno[2,3-d]pyrimidine derivatives showed strong in vitro abilities to inhibit VEGFR-2 and to prevent cancer cell growth in two different types of cancer cells, MCF-7 and HepG2. Particularly, compound 22 showed the most potent anti-VEGFR-2 activity with an IC50 value of 0.58 µM. Additionally, compound 22 exhibited good anti-proliferative activity against both MCF-7 and HepG2 cancer cell lines, with IC50 values of 11.32 ± 0.32 and 16.66 ± 1.22 µM, respectively. Further investigations revealed that compound 22 induced cell cycle arrest at the G2/M phase and promoted both early and late apoptosis in the MCF-7 cancer cells. Compound 22 also increased the level of BAX (2.8-fold), and reduced the level of Bcl-2 (2.2-fold), hence increasing the rate of apoptosis. Compound 22 also revealed 2.9-fold and 2.8-fold higher levels of caspase-8 and caspase-9, respectively, in the treated MCF-7 cancer cells compared to the control cell lines. The MD simulations showed that the VEGFR-2-22 complex was structurally and energytically stable over 100 ns, while the MM-GBSA study indicated its stable thermodynamic behavior. The bi-dimensional projection analysis confirmed the proper binding of the VEGFR-2-22 complex, while the DFT studies provided optimized geometry, charge distribution, FMO, ESP, the total density of state, and QTAIM maps of compound 22. Finally, computational ADMET studies were performed to assess the drug development potential of the thieno[2,3-d]pyrimidine derivatives. Overall, this study suggests that compound 22 has the potential as an anticancer lead compound by inhibiting VEGFR-2, which may be a guide for future drug design and development.


Subject(s)
Antineoplastic Agents , Pyrimidines , Pyrimidines/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line , Drug Design
8.
Microorganisms ; 11(3)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36985244

ABSTRACT

The finding that some mAbs are antifungal suggests that antibody immunity may play a key role in the defense of the host against mycotic infections. The discovery of antibodies that guard against fungi is a significant advancement because it gives rise to the possibility of developing vaccinations that trigger protective antibody immunity. These vaccines might work by inducing antibody opsonins that improve the function of non-specific (such as neutrophils, macrophages, and NK cells) and specific (such as lymphocyte) cell-mediated immunity and stop or aid in eradicating fungus infections. The ability of antibodies to defend against fungi has been demonstrated by using monoclonal antibody technology to reconsider the function of antibody immunity. The next step is to develop vaccines that induce protective antibody immunity and to comprehend the mechanisms through which antibodies mediate protective effects against fungus.

9.
Microorganisms ; 11(2)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36838306

ABSTRACT

The scale at which the SARS-CoV-2/COVID-19 pandemic has spread remains enormous. Provided the genetic makeup of the virus and humans is readily available, the quest for knowing the mechanism and epidemiology continues to prevail across the entire scientific community. Several aspects, including immunology, molecular biology, and host-pathogen interaction, are continuously being dug into for preparing the human race for future pandemics. The exact reasons for vast differences in symptoms, pathophysiological implications of COVID-infections, and mortality differences remain elusive. Hence, researchers are also looking beyond traditional genomics, proteomics, and transcriptomics approach, especially entrusting the environmental regulation of the genetic landscape of COVID-human interactions. In line with these questions lies a critical process called epigenetics. The epigenetic perturbations in both host and parasites are a matter of great interest to unravel the disparities in COVID-19 mortalities and pathology. This review provides a deeper insight into current research on the epigenetic landscape of SARS-CoV-2 infection in humans and potential targets for augmenting the ongoing investigation. It also explores the potential targets, pathways, and networks associated with the epigenetic regulation of processes involved in SARS-CoV-2 pathology.

10.
Front Chem ; 11: 1115377, 2023.
Article in English | MEDLINE | ID: mdl-36817174

ABSTRACT

Carboxymethyl ß-cyclodextrin-nanochitosan-glutaraldehyde (CM-ßCD:nChi:Glu) terpolymer was prepared as a nano-adsorbent for the removal of the anionic textile dye, acid red 37. The terpolymer nanocomposite formation and characterization were clarified by FTIR, XRD, scanning electron microscopy, TEM, Brunauer-Emmett-Teller specific surface area (BET-SSA), and zeta potential. The removal of the textile dye was investigated by using the batch adsorption method, investigating the effect of pH, dye concentration, adsorbent dose, contact time, and temperature. The results revealed that the maximum removal efficiency of 102.2 mg/L of the dye is about 99.67% under pH 6.0, the optimal contact time is 5 min, and the adsorbent dosage is 0.5 g/L. At 29°C; the adsorption capacity increased from 81.29 to 332.60 mg/g when the initial concentration of the dye was increased from 40.97 to 212.20 mg/L. Adsorption kinetics fitted well with the pseudo-second-order model with a good correlation (R 2 = 0.9998). The Langmuir isotherm model can best describe the adsorption isotherm model. Based on the experimental results, the CM-ßCD:nChi:Glu terpolymer has a promising potential as an efficient novel adsorbent for the removal of textile dye acid red 37 from contaminated water. This study's preparation techniques and demonstrated mechanisms offer valuable insights into the adsorbent-adsorbate interactions mechanism, analysis, challenges, and future directions of beta-cyclodextrin/chitosan-based adsorbents in wastewater treatment.

11.
Vaccines (Basel) ; 11(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36679947

ABSTRACT

The emergence of novel variants of SARS-CoV-2 and their abilities to evade the immune response elicited through presently available vaccination makes it essential to recognize the mechanisms through which SARS-CoV-2 interacts with the human immune response. It is essential not only to comprehend the infection mechanism of SARS-CoV-2 but also for the generation of effective and reliable vaccines against COVID-19. The effectiveness of the vaccine is supported by the adaptive immune response, which mainly consists of B and T cells, which play a critical role in deciding the prognosis of the COVID-19 disease. T cells are essential for reducing the viral load and containing the infection. A plethora of viral proteins can be recognized by T cells and provide a broad range of protection, especially amid the emergence of novel variants of SARS-CoV-2. However, the hyperactivation of the effector T cells and reduced number of lymphocytes have been found to be the key characteristics of the severe disease. Notably, excessive T cell activation may cause acute respiratory distress syndrome (ARDS) by producing unwarranted and excessive amounts of cytokines and chemokines. Nevertheless, it is still unknown how T-cell-mediated immune responses function in determining the prognosis of SARS-CoV-2 infection. Additionally, it is unknown how the functional perturbations in the T cells lead to the severe form of the disease and to reduced protection not only against SARS-CoV-2 but many other viral infections. Hence, an updated review has been developed to understand the involvement of T cells in the infection mechanism, which in turn determines the prognosis of the disease. Importantly, we have also focused on the T cells' exhaustion under certain conditions and how these functional perturbations can be modulated for an effective immune response against SARS-CoV-2. Additionally, a range of therapeutic strategies has been discussed that can elevate the T cell-mediated immune response either directly or indirectly.

12.
Antibiotics (Basel) ; 12(1)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36671350

ABSTRACT

Enterobacteriaceae have been classified as severely drug resistant bacteria by the World Health Organization due to their extensive production and dissemination of carbapenemases (CPs) and extended-spectrum ß-lactamases (ESBL). The current study was conducted with the aim to determine the prevalence of CP- and ESBL-producing Enterobacteriaceae, as well as their antibiotic susceptibility profiles. For this, a hospital-based study was conducted which included 384 participants with bacterial infections. The collection and processing of specimens was conducted per standard microbiological protocol. The samples were inoculated on agar media plates to obtain the bacterial growths, and if they were positive for any bacterial growth, the antibiotic susceptibility testing was performed using disk diffusion method to check their antibiotic susceptibility patterns. The double disc diffusion as well as carbapenem inhibition techniques were used to examine the CP enzymes. Multiplex real-time PCR technique was performed to identify three distinct genetic types of CPs that have been identified in the Enterobacteriaceae (KPC, NDM, and OXA-48). A majority of participants (58.3%) in the current study were living in urban areas. A total of 227 (59.1%) patients were hospitalized. Furthermore, 26.04% of the patients were determined to be suffering from infections with Enterobacteriaceae. Escherichia coli was the most prevalent (9.1%) isolate overall, followed by Klebsiella pneumoniae (8.07%), Acinetobacter baumannii (2.6%), Pseudomonas aeruginosa (3.1%), Enterobacter cloacae (1.3%), Proteus spp. (1.3%), and Morganella spp. (0.5%). The studied patients were suffering from urinary tract infections (48.6%), blood stream infections (32.2%), wounds infection (11.9%), and respiratory infections (7.03%), confirmed with bacterial cultures. The resistance against carbapenems was seen in 31.4% of E. coli isolates, 25.8% in K. pneumoniae, 50% in P. aeruginosa, 25% in A. baumannii, and 20% in E. cloacae isolates. Such high rates of CP- and ESBL-producing Enterobacteriaceae are alarming, suggesting high spread in the study area. It is advised to implement better infection prevention and control strategies and conduct further nationwide screening of the carriers of these pathogens. This might help in reducing the burden of highly resistant bugs.

13.
PLoS One ; 18(1): e0274081, 2023.
Article in English | MEDLINE | ID: mdl-36716311

ABSTRACT

Fifteen quinazoline derivatives were designed and synthesized as DNA intercalators. The cytotoxicity of the designed members was assessed against HCT-116 and HepG2 cancer cell lines. In addition, the topoisomerase II (Topo II) inhibitory effect was assessed. Compound 16 was the most cytotoxic and Topo II inhibitor with low cytotoxicity against Vero cells. Compounds 16, 17, and 18 showed significant DNA binding affinities. Compound 16 showed Topo II catalytic inhibitory effect at a concentration of 10 µM. Further mechanistic investigations revealed the capability of compound 16 to induce apoptosis in HCT-116 cells and arrest the growth at the S and G2/M phases. Also, compound 16 showed a significant increase in the level of BAX (2.18-fold) and a marked decrease in the level of Bcl-2 (1.9-fold) compared to the control cells. In silico studies revealed the ability of the synthesized members to bind to the DNA-Topo II complex.


Subject(s)
Antineoplastic Agents , Topoisomerase II Inhibitors , Animals , Chlorocebus aethiops , Molecular Structure , Topoisomerase II Inhibitors/pharmacology , Structure-Activity Relationship , Cell Line, Tumor , Quinazolines/pharmacology , Vero Cells , Drug Design , Cell Proliferation , Antineoplastic Agents/chemistry , DNA/metabolism , DNA Topoisomerases, Type II/metabolism , Drug Screening Assays, Antitumor
14.
Rev Med Virol ; 33(2): e2424, 2023 03.
Article in English | MEDLINE | ID: mdl-36708022

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 may inflict a post-viral condition known as post-COVID-19 syndrome (PCS) or long-COVID. Studies measuring levels of inflammatory and vascular biomarkers in blood, serum, or plasma of COVID-19 survivors with PCS versus non-PCS controls have produced mixed findings. Our review sought to meta-analyse those studies. A systematic literature search was performed across five databases until 25 June 2022, with an updated search on 1 November 2022. Data analyses were performed with Review Manager and R Studio statistical software. Twenty-four biomarkers from 23 studies were meta-analysed. Higher levels of C-reactive protein (Standardized mean difference (SMD) = 0.20; 95% CI: 0.02-0.39), D-dimer (SMD = 0.27; 95% CI: 0.09-0.46), lactate dehydrogenase (SMD = 0.30; 95% CI: 0.05-0.54), and leukocytes (SMD = 0.34; 95% CI: 0.02-0.66) were found in COVID-19 survivors with PCS than in those without PCS. After sensitivity analyses, lymphocytes (SMD = 0.30; 95% CI: 0.12-0.48) and interleukin-6 (SMD = 0.30; 95% CI: 0.12-0.49) were also significantly higher in PCS than non-PCS cases. No significant differences were noted in the remaining biomarkers investigated (e.g., ferritin, platelets, troponin, and fibrinogen). Subgroup analyses suggested the biomarker changes were mainly driven by PCS cases diagnosed via manifestation of organ abnormalities rather than symptomatic persistence, as well as PCS cases with duration of <6 than ≥6 months. In conclusion, our review pinpointed certain inflammatory and vascular biomarkers associated with PCS, which may shed light on potential new approaches to understanding, diagnosing, and treating PCS.


Subject(s)
COVID-19 , Humans , Post-Acute COVID-19 Syndrome , Biomarkers , SARS-CoV-2 , C-Reactive Protein
15.
Chem Biol Interact ; 370: 110328, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36549637

ABSTRACT

Curcumin (CUR) is well known for its extraordinary benefits as an anti-cancer, anti-inflammatory, and wound healing agent. However, nano-formulation could maintain and regulate its pharmacological effect. Herein, we report the preparation of CUR/hydroxyapatite nanocomposite (CUR/HA NC) and its application in the protection of male Wistar rats from γ-irradiation carcinogenic consequences. TEM images of the nanocrystalline HA nanoparticles (NPs) had a rod-like form with average dimensions of 40±5 nm in length and 10 ± 5 nm in width. XRD analysis illustrated the formation of a single phase of hexagonal crystalline HA NPs. The presence of the CUR fingerprint is visible in its FTIR spectra of the CUR/HA NC. Biochemical analysis and histological examinations revealed that CUR/HA NC injection does not significantly affect non-irradiation rats compared to the control. However, when injected pre-irradiation, it controls the pro-inflammatory cytokines (tumor necrosis factor-alpha, interleukin-6) GSH level, kidney, and liver functions as proved by biochemical histopathological and immunohistochemical findings. This research introduces a novel effective protection modality for the γ-irradiation hazard via biocompatible CUR/HA NC injection.


Subject(s)
Curcumin , Nanocomposites , Nanoparticles , Rats , Male , Animals , Curcumin/pharmacology , Curcumin/chemistry , Rats, Wistar , Durapatite , Nanoparticles/chemistry , Anti-Inflammatory Agents , Nanocomposites/chemistry
16.
Trop Med Infect Dis ; 7(12)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36548669

ABSTRACT

The emergence of genetic mutations in chromosomal genes and the transmissible plasmid-mediated colistin resistance gene may have helped in the spread of colistin resistance among various Klebsiella pneumoniae (K. pneumoniae) isolates and other different bacteria. In this study, the prevalence of mutated colistin-resistant K. pneumoniae isolates was studied globally using a systematic review and meta-analysis approach. A systematic search was conducted in databases including PubMed, ScienceDirect, Scopus and Google Scholar. The pooled prevalence of mutated colistin resistance in K. pneumoniae isolates was analyzed using Comprehensive Meta-Analysis Software (CMA). A total of 50 articles were included in this study. The pooled prevalence of mutated colistin resistance in K. pneumoniae was estimated at 75.4% (95% CI = 67.2−82.1) at high heterogeneity (I2 = 81.742%, p-value < 0.001). Meanwhile, the results of the subgroup analysis demonstrated the highest prevalence in Saudi Arabia with 97.9% (95% CI = 74.1−99.9%) and Egypt, with 4.5% (95% CI = 0.6−26.1%), had the lowest. The majority of mutations could be observed in the mgrB gene (88%), pmrB gene (54%) and phoQ gene (44%). The current study showed a high prevalence of the mutation of colistin resistance genes in K. pneumoniae. Therefore, it is recommended that regular monitoring be performed to control the spread of colistin resistance.

17.
Vaccines (Basel) ; 10(10)2022 Oct 02.
Article in English | MEDLINE | ID: mdl-36298520

ABSTRACT

Since the first case of Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019, SARS-CoV-2 infection has affected many individuals worldwide. Eventually, some highly infectious mutants-caused by frequent genetic recombination-have been reported for SARS-CoV-2 that can potentially escape from the immune responses and induce long-term immunity, linked with a high mortality rate. In addition, several reports stated that vaccines designed for the SARS-CoV-2 wild-type variant have mixed responses against the variants of concern (VOCs) and variants of interest (VOIs) in the human population. These results advocate the designing and development of a panvaccine with the potential to neutralize all the possible emerging variants of SARS-CoV-2. In this context, recent discoveries suggest the design of SARS-CoV-2 panvaccines using nanotechnology, siRNA, antibodies or CRISPR-Cas platforms. Thereof, the present comprehensive review summarizes the current vaccine design approaches against SARS-CoV-2 infection, the role of genetic mutations in the emergence of new viral variants, the efficacy of existing vaccines in limiting the infection of emerging SARS-CoV-2 variants, and efforts or challenges in designing SARS panvaccines.

18.
J Parasit Dis ; 46(3): 722-728, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36091264

ABSTRACT

Enterobiasis is a highly infectious parasitic disease spreading worldwide including Yemen. Therefore, this study aimed to investigate the prevalence and risk factors of enterobiasis among Yemeni children in Dhamar governorate. A total of 402 children (aged 1-12 years) participated in this cross-sectional survey carried out at Thamar University Al-Wahdah Teaching Hospital (TUWTH), between 2018 and 2019. Enterobius vermicularis infection was examined using the adhesive tape technique. Association between risk factors and enterobiasis were measured by prevalence ratio (PR). The overall prevalence of enterobiasis was found to be 29.4% (118/402). Risk factors that showed independent association with the infection were child's care responsibility (PR = 1.90; 95% CI = 1.37-2.63; P = 0.001); irregular washing hands before meals (PR = 2.01; 95% CI = 1.32-3.05; P = 0.003); habit of nail biting or cutting by teeth (PR = 1.61; 95% CI = 1.18-2.21; P = 0.002); habit of putting toys or pen in mouth (PR = 1.58; 95% CI = 1.19-2.10; P = 0.002); frequent anal itching (PR = 1.46; 95% CI = 1.10-1.93; P = 0.016); using anthelmintic during the last six months (PR = 1.68; 95% CI = 1.20-2.36; P = 0.011); and parents have no knowledge on preventive measures (PR = 1.62; 95% CI = 1.04-2.53; P = 0.036). Prevalence of enterobiasis among Yemeni children in Dhamar governorate is high with higher infection rate among those aged 1-6 years. Health education and mass treatment are highly recommended among this poor population.

19.
J Enzyme Inhib Med Chem ; 37(1): 2206-2222, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35980113

ABSTRACT

New nicotinamide derivatives 6, 7, 10, and 11 were designed and synthesised based on the essential features of the VEGFR-2 inhibitors. Compound 10 revealed the highest anti-proliferative activities with IC50 values of 15.4 and 9.8 µM against HCT-116 and HepG2, respectively compared to sorafenib (IC50 = 9.30 and 7.40 µM). Compound 7 owned promising cytotoxic activities with IC50 values of 15.7 and 15.5 µM against the same cell lines, respectively. Subsequently, the VEGFR-2 inhibitory activities were assessed for the titled compounds to exhibit VEGFR-2 inhibition with sub-micromolar IC50 values. Moreover, compound 7 induced the cell cycle cessation at the cycle at %G2-M and G0-G1phases, and induced apoptosis in the HCT-116. Compounds 7 and 10 reduced the levels of TNF-α by 81.6 and 84.5% as well as IL-6 by 88.4 and 60.9%, respectively, compared to dexamethasone (82.4 and 93.1%). In silico docking, molecular dynamics simulations, ADMET, and toxicity studies were carried out.


Subject(s)
Antineoplastic Agents , Vascular Endothelial Growth Factor Receptor-2 , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Apoptosis , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Molecular Docking Simulation , Molecular Structure , Niacinamide/pharmacology , Protein Kinase Inhibitors/pharmacology , Structure-Activity Relationship
20.
Molecules ; 27(16)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36014572

ABSTRACT

Tuberculosis (TB) caused by the bacterial pathogen Mycobacterium tuberculosis (Mtb) remains a threat to mankind, with over a billion of deaths in the last two centuries. Recent advancements in science have contributed to an understanding of Mtb pathogenesis and developed effective control tools, including effective drugs to control the global pandemic. However, the emergence of drug resistant Mtb strains has seriously affected the TB eradication program around the world. There is, therefore, an urgent need to develop new drugs for TB treatment, which has grown researchers' interest in small molecule-based drug designing and development. The small molecules-based treatments hold significant potential to overcome drug resistance and even provide opportunities for multimodal therapy. In this context, various natural and synthetic flavonoids were reported for the effective treatment of TB. In this review, we have summarized the recent advancement in the understanding of Mtb pathogenesis and the importance of both natural and synthetic flavonoids against Mtb infection studied using in vitro and in silico methods. We have also included flavonoids that are able to inhibit the growth of non-tubercular mycobacterial organisms. Hence, understanding the therapeutic properties of flavonoids can be useful for the future treatment of TB.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Drug Delivery Systems , Flavonoids/pharmacology , Flavonoids/therapeutic use , Humans , Tuberculosis/drug therapy , Tuberculosis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...