Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Mycol Med ; 25(2): 108-15, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25703134

ABSTRACT

OBJECTIVE: Optimization of medium components and physicochemical parameters for antifungal production by an alkaliphilic and salt-tolerant actinomycete designated Streptomyces sp. SY-BS5; isolated from an arid region in south of Algeria. MATERIALS AND METHODS: The strain showed broad-spectrum activity against pathogenic and toxinogenic fungi. Identification of the actinomycete strain was realized on the basis of 16S rRNA gene sequencing. Antifungal production was optimized following one-factor-at-a-time (OFAT) and response surface methodology (RSM) approaches. The most suitable medium for growth and antifungal production was found using one-factor-at-a-time methodology. The individual and interaction effects of three nutritional variables, carbon source (glucose), nitrogen source (yeast extract) and sodium chloride (NaCl) were optimized by Box-Behnken design. Finally, culture conditions for the antifungal production, pH and temperature were studied and determined. RESULTS: Analysis of the 16S rRNA gene sequence (1454 nucleotides) assigned this strain to Streptomyces genus with 99% similarity with Streptomyces cyaneofuscatus JCM4364(T), the most closely related. The results of the optimization study show that concentrations 3.476g/L of glucose, 3.876g/L of yeast extract and 41.140g/L of NaCl are responsible for the enhancement of antifungal production by Streptomyces sp. SY-BS5. The preferable culture conditions for antifungal production were pH 10, temperature 30°C for 09 days. CONCLUSION: This study proved that RSM is usual and powerful tool for the optimization of antifungal production from actinomycetes.


Subject(s)
Antifungal Agents/metabolism , Microbiological Techniques/standards , Salt Tolerance , Streptomyces/metabolism , Actinobacteria/classification , Actinobacteria/metabolism , Bioreactors/standards , Calibration , Culture Media/chemistry , Culture Media/pharmacology , Halobacteriaceae/classification , Halobacteriaceae/metabolism , Humans , Hydrogen-Ion Concentration , Streptomyces/classification , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...