Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Chem Sci ; 14(34): 9055-9062, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37655033

ABSTRACT

We introduce a versatile Rh(i)-catalyzed cascade reaction, combining C(sp2)-H bond functionalization and amidation between N-arylphosphanamines and acrylates. This innovative approach enables the rapid synthesis of dihydroquinolinone scaffolds, a common heterocycle found in various pharmaceuticals. Notably, the presence of the phosphorus atom facilitates the aniline ortho-C(sp2)-H bond activation prior to N-P bond hydrolysis, streamlining one-pot intramolecular amidation. Moreover, we demonstrate the applicability of this reaction by synthesizing an antipsychotic drug. Detailed mechanistic investigations revealed the involvement of a Rh-H intermediate, with substrate inhibition through catalyst saturation.

2.
J Am Chem Soc ; 145(8): 4508-4516, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36802602

ABSTRACT

We report a Rh(III)-catalyzed ortho-C-H bond functionalization of nitroarenes with 1,2-diarylalkynes and carboxylic anhydrides. The reaction unpredictably affords 3,3-disubstituted oxindoles with the formal reduction of the nitro group under redox-neutral conditions. Besides good functional group tolerance, this transformation allows the preparation of oxindoles with a quaternary carbon stereocenter using nonsymmetrical 1,2-diarylalkynes. This protocol is facilitated by the use of a functionalized cyclopentadienyl (CpTMP*)Rh(III) [CpTMP* = 1-(3,4,5-trimethoxyphenyl)-2,3,4,5-tetramethylcyclopentadienyl] catalyst we developed, which combines an electron-rich character with an elliptical shape. Mechanistic investigations, including the isolation of three rhodacyle intermediates and extensive density functional theory calculations, indicate that the reaction proceeds through nitrosoarene intermediates via a cascade of C-H bond activation─O-atom transfer─[1,2]-aryl shift─deoxygenation─N-acylation.

3.
Org Lett ; 24(37): 6755-6760, 2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36083787

ABSTRACT

We report an Rh(I)-catalyzed C-H bond alkylation of PhenCarPhos [N-(2-(diphenylphosphaneyl)phenyl)carbazole] and some congener phosphine ligands with alkenes. The C-H bond functionalization occurred exclusively at the C1 position of the carbazolyl unit because the trivalent phosphine acts as a directing group. This protocol provides straightforward access to a large library of C1-alkyl substituted PhenCarPhos, which outperformed common commercial or unfunctionalized phosphines and their precursors in the Pd-catalyzed carbon dioxide-fixation reactions with propargylic amines.

4.
J Am Chem Soc ; 144(13): 5902-5909, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35316065

ABSTRACT

A photoinduced arylation of N-substituted acridinium salts has been developed and has exhibited a high functional group tolerance (e.g., halogen, nitrile, ketone, ester, and nitro). A broad range of well-decorated C9-arylated acridinium-based catalysts with fine-tuned photophysical and photochemical properties, namely, excited-state lifetimes and redox potentials have been synthetized in a one-step procedure. These functionalized acridinium salts were later evaluated in the photoredox-catalyzed fragmentation of 1,2-diol derivatives (lignin models). Among them, 2-bromophenyl substituted N-methyl acridinium has outperformed all photoredox catalysts, including commercial Fukuzumi's catalyst, for the selective CßO-Ar bond cleavage of diol monoarylethers to afford 1,2-diols in good yields.


Subject(s)
Nitriles , Salts , Catalysis , Nitriles/chemistry , Oxidation-Reduction
5.
Chem Soc Rev ; 50(19): 10806-10835, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34605827

ABSTRACT

In the light of the recent potentials of deuterated molecules as pharmaceuticals or even in mechanistic understanding, efficient methods for their synthesis are continually desired. CD3-containing molecules are prominent amongst these motifs due to the parallel of the "magic methyl effect": introducing a methyl group into pharmaceuticals could positively affect biological activities. The trideuteromethyl group is bound to molecules either by C, N, O, or S atom. For a long time, the preparation methods of such labeled compounds were underestimated and involved multi-step syntheses. More recently, specific approaches dealing with the direct incorporation of the CD3 group have been developed. This Review gives an overview of the methods for the preparation of CD3-labeled molecules from conventional functional group interconversion techniques to catalytic approaches and include radical strategy. Detailed reaction mechanisms are also discussed.

6.
Chemistry ; 27(49): 12552-12557, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34236719

ABSTRACT

The utility of C-H bond functionalization of metalated ligands for the elaboration of aryl-functionalized difluorinated-1-arylisoquinolinyl Ir(III) complexes has been explored. Bis[(3,5-difluorophenyl)isoquinolinyl](2,2,6,6-tetramethyl-3,5-heptanedionato) iridium(III) undergoes Pd-catalyzed C-H bond arylation with aryl bromides. The reaction regioselectively occurred at the C-H bond flanked by the two fluorine atoms of the difluoroaryl unit, and on both cyclometalated ligands. This post-functionalization gives a straightforward access to modified complexes in only one manipulation and allows to introduce thermally sensitive functional groups, such as trifluoromethyl, nitrile, benzoyl, or ester. The X-ray crystallography, photophysical, and electrochemical properties of the diarylated complexes were investigated. Whatever the nature of the incorporated substituted aryl groups is, all obtained complexes emit red phosphorescence (622-632 nm) with similar lifetimes (1.9-2 µs).

7.
Chemistry ; 27(17): 5546-5554, 2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33624911

ABSTRACT

Direct arylation of most five-membered ring heterocycles are generally easily accessible and strongly favored at the α-position using classical palladium-catalysis. Conversely, regioselective functionalization of such heterocycles at the concurrent ß-position remains currently very challenging. Herein, we report general conditions for regioselective direct arylation at the ß-position of pyrazoles, while C-H α-position is free. By using aryl bromides as the aryl source and a judicious choice of solvent, the arylation reaction of variously N-substituted pyrazoles simply proceeds via ß-C-H bond functionalization. The ß-regioselectivity is promoted by a ligand-free palladium catalyst and a simple base without oxidant or further additive, and tolerates a variety of substituents on the bromoarene. DFT calculations revealed that a protic solvent such as 2-ethoxyethan-1-ol significantly enhances the acidity of the proton at ß-position of the pyrazoles and thus favors this direct ß-C-H bond arylation. This selective pyrazoles ß-C-H bond arylation was successfully applied for the straightforward building of π-extended poly(hetero)aromatic structures via further Pd-catalyzed combined α-C-H intermolecular and intramolecular C-H bond arylation in an overall highly atom-economical process.

8.
Chem Commun (Camb) ; 57(8): 1038-1041, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33409528

ABSTRACT

Photoredox-mediated C-H bond alkylation of 6-aryl-2,2'-bipyridines with N-(acyloxy)phthalimides is reported. The reaction exhibits excellent functional group tolerance, including chiral aliphatic groups. The influence of the incorporated C6'-alkyl group on the photophysical properties of the corresponding (N^N^C) cyclometalated Pt(ii) complexes is described, including chiroptical properties.

9.
Inorg Chem ; 59(19): 13898-13911, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32945677

ABSTRACT

Pd-catalyzed C-H bond arylation applied to 2-(2,4-difluorophenyl)-5-(trifluoromethyl)pyridine (1) and 2-(3,5-difluorophenyl)-5-(trifluoromethyl)pyridine (5) allows the access to two families of Ir(III) complexes, charge-neutral and cationic species. The reaction is regioselective since only the C3- or C4-position of the fluorinated phenyl ring of 1 or 5 is readily functionalized - namely the C-H bond flanked by the two fluorine atoms which is the most acidic - which allows the electronic control of the reactive site. A range of electron-withdrawing (CN, CO2Et, C(O)Me) substituents on the aryl group has been incorporated leading to the pro-ligands (1, Ar-2,4-dFppy; 2, Ar = p-C6H4-CN; 3, Ar = p-C6H4-CO2Et; 4, Ar = p-C6H4-C(O)Me; 5, and Ar-3,5-dFppy; 6, Ar = p-C6H4-CO2Et). The unsubstituted complexes F1/G1 and F1/G5 featuring 1 and 5, respectively, as C^N ligands are used as reference complexes. The families of five charge-neutral [Ir(C^N)2(N^O)] complexes (C^N is 2-(5-aryl-(4,6-difluorophenyl)-5-(trifluoromethyl)pyridinato (F2-F4), and 2-(4-aryl-(3,5-difluorophenyl)-5-(trifluoromethyl)pyridinato (F5-F6), N^O = 2-picolinate) and five cationic [Ir(C^N)2(N^N)]PF6 complexes (N^N = dmbpy is 4,4'-dimethyl-2,2'-bipyridine) (G2-G6) were synthesized, and their structural and photophysical properties were studied with comparison to the unsubstituted analogues used as reference complexes. The appended aryl group provides large steric bulk as the biaryl fragment is twisted as shown by the X-ray crystal structures of F2, F5, F6, G3, and G5. These latter complexes display a wide variety of different Ir···Ir intermetallic distances in crystals, from 8.150 Å up to 15.034 Å. Moreover, the impact on the emission energy is negligible, as a result of the breaking of the conjugation between the two aryl groups. Charge-neutral complexes [Ir(C^N)2(N^O)] (N^O = 2-picolinate) show bright luminescence: F2-F4 (λem = 495-499 nm) are blue-green emitters, whereas F5 and F6 (λem = 537, 544 nm), where the fluorine substituents are located at the C3- and C5-positions, emit in the green region of the visible spectrum. In all cases, a unitary photoluminescence quantum yield is found. The improvement of Φ might be explained by an increase of the radiative rate constant due to a higher degree of rigidity of these congested molecules, compared to the unsubstituted complex F1. The same trends are observed for the family of complexes G. Complexes G1-G4 exhibit blue photoluminescence, and G5 and G6 lead to a red-shifted emission band, as also found for the related complexes F5 and F6 due to the similar fluorine substitution pattern. Their emission quantum yields are remarkably high for charged complexes in the CH2Cl2 solution. These results showed that Pd-catalyzed C-H bond arylation is a valuable synthetic approach for designing efficient emitters with tunable photophysical properties.

10.
Org Lett ; 22(15): 5936-5940, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32643948

ABSTRACT

We report herein P(III)-directed C-H bond alkenylation of (dialkyl)- and (diaryl)biarylphosphines using internal alkynes. Chloride-free [Rh(OAc)(COD)]2 acts as a better catalyst than commercially available [RhCl(COD)]2. Conditions were developed to control the mono- and difunctionalization depending on the alkyne stoichiometry. One of these novel bisalkenylated (dialkyl)biarylphosphines was employed for the preparation of a palladium(II) complex, and some of these functionalized ligands outperformed their corresponding unfunctionalized phosphines in Pd-catalyzed amidation with sterically hindered aryl chlorides.

11.
J Org Chem ; 85(5): 3655-3663, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32036657

ABSTRACT

We report herein a sustainable method for the preparation of 2-arylpyridines through C-H arylation of pyridines using in situ formed diazonium salts (from commercially available aromatic amines) in the presence of a photoredox catalyst under blue light-emitting diode (LED) irradiation. The reaction is tolerant to a wide range of functional groups (e.g., halogen, nitrile, formyl, acetyl, ester). Applications to the C-H bond arylation of bipyridine ligands is also presented.

12.
Beilstein J Org Chem ; 15: 2069-2075, 2019.
Article in English | MEDLINE | ID: mdl-31501675

ABSTRACT

The Pd-catalyzed C-H bond functionalization of lilolidine was investigated. The use of a palladium-diphosphine catalyst associated to acetate bases in DMA was found to promote the regioselective arylation at α-position of the nitrogen atom of lilolidine with a wide variety of aryl bromides. From these α-arylated lilolidines, a second arylation at the ß-position gives the access to α,ß-diarylated lilolidines containing two different aryl groups. The one pot access to α,ß-diarylated lilolidines with two identical aryl groups is also possible by using a larger amount of aryl bromide. The synthesis of 5,6-dihydrodibenzo[a,c]pyrido[3,2,1-jk]carbazoles from lilolidine via three successive direct arylations is also described. Therefore, this methodology provides a straightforward access to several lilolidine derivatives from commercially available compounds via one, two or three C-H bond functionalization steps allowing to tune their biological properties.

13.
J Org Chem ; 84(20): 13135-13143, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31333028

ABSTRACT

Palladium-catalyzed C-H bond arylation of imidazoles has been applied to pharmaceuticals such as Bifonazole, Climbazole, and Prochloraz. In the presence of phosphine-free Pd(OAc)2 catalyst, aryl bromides are efficiently coupled at the C5-position of the imidazole units, which are widely decorated. Under these conditions, only C-H bond arylation reaction occurred without affecting the integrity of chemical structure of the imidazole-based pharmaceuticals. Moreover, with Bifonazole Pd-catalyzed C-H bond diarylation at the C2- and C5-positions of imidazole unit has also been performed.

14.
Angew Chem Int Ed Engl ; 58(40): 14110-14114, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31340084

ABSTRACT

We report the C-H alkylation of biarylphosphines at the ortho' position(s) with alkenes by using rhodium(I) catalysis, which provides straightforward access to a large library of multifunctionalized phosphines. Some of these modified ligands outperformed commercially available phosphines in the Pd-catalyzed carboxylation of aryl bromides with carbon dioxide in the presence of a photoredox catalyst.

15.
Chemistry ; 25(40): 9504-9513, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-30977569

ABSTRACT

The potential of the heterogeneous catalyst 10 % Pd/C in the direct arylation of (poly)fluorobenzene derivatives with aryl bromides has been investigated. In general, high yields of biaryl derivatives were obtained by using tri-, tetra-, and pentafluorobenzenes, whereas mono- and difluorobenzenes exhibited poor reactivity. The regioselectivities of the arylation reactions were similar to those observed with homogeneous palladium catalysts. Both electron-withdrawing and -donating substituents, such as nitrile, nitro, acetyl, ester, trifluoromethyl, tert-butyl, methoxy, or methyl, on the aryl bromide were tolerated. Unexpectedly, tetrafluoro-substituted [1,1'-biphenyl]-4-ols were obtained from pentafluorobenzene at 150 °C due to a formal regioselective hydroxylation, whereas at lower temperatures the expected pentafluorobiphenyls were obtained. However, no C-F bond cleavage was observed with the other polyfluorobenzene derivatives. These arylation reactions were carried out with only 1 mol % Pd/C as the catalyst and KOAc as an inexpensive base. Therefore, this protocol represents a very attractive access to (poly)fluoro-substituted biphenyls in terms of cost, simplicity, and sustainable chemistry because the Pd/C catalyst can be easily removed at the end of the reaction, there is no contamination with phosphine ligand residues, and the major side-product of the reaction is KOAc⋅HBr.

16.
Dalton Trans ; 48(1): 202-208, 2018 Dec 18.
Article in English | MEDLINE | ID: mdl-30516194

ABSTRACT

Five new platinum(ii) complexes bearing a cyclometallated 5-π-delocalized donor-1,3-di(2-pyridyl)benzene were prepared and fully characterized. Their second-order nonlinear optical (NLO) properties were determined by the Electric-Field Induced Second Harmonic generation (EFISH) technique, working in DMF solution with an incident wavelength of 1907 nm, whereas the dipole moments were determined by Density Functional Theory (DFT) calculations. Remarkably, the platinum(ii) complex with a cyclometallated 5-guaiazulene-CH[double bond, length as m-dash]CH-1,3-di(2-pyridyl)benzene appears as a very good candidate for application in photonics, being characterized by the largest second-order NLO response. Besides, it appeared that the nature of substituents on thiophene, chosen as π-delocalized moiety in position 5 of the 1,3-di(2-pyridyl)benzene, strongly affects the NLO properties.

17.
Chem Rev ; 118(16): 7532-7585, 2018 08 22.
Article in English | MEDLINE | ID: mdl-30011194

ABSTRACT

Transition metal-catalyzed C-H bond functionalizations have been the focus of intensive research over the last decades for the formation of C-C bonds from unfunctionalized arenes, heteroarenes, alkenes. These direct transformations provide new approaches in synthesis with high atom- and step-economy compared to the traditional catalytic cross-coupling reactions. However, such methods still suffer from several limitations including functional group tolerance and the lack of regioselectivity. In addition, they often require harsh reaction conditions and some of them need the use of strong oxidant, in a stoichiometric amount, avoiding these processes to be truly eco-friendly. The use of photoredox catalysis has contributed to a significant expansion of the scope of C(sp2)-H bond functionalizations which include the direct arylations, (perfluoro)alkylations, acylations, and even cyanations. Most of these transformations involve the photochemical induced generation of a radical followed by its regioselective addition to arenes, heteroarenes, or alkenes, leading to the building of a new C(sp2)-C bond. The use of photoredox catalysis plays crucial roles in these reactions promoting electron transfer, enabling the generation of radical species and single electron either oxidation or reduction. Such reactions operating at room temperature allow the building of C-C bonds with high chemo-, regio-, or stereoselectivity. This review surveys the formation of C(sp2)-C bonds initiated by photoredox catalysis which involves a C(sp2)-H bond functionalization step, describes the advantages compared to traditional C(sp2)-H bond functionalizations, and presents mechanistic insights into the role played by the photoredox catalysts.

18.
Org Biomol Chem ; 16(27): 4954-4957, 2018 07 11.
Article in English | MEDLINE | ID: mdl-29942964

ABSTRACT

Pyridin-2-ylmethyl tosylate derivatives are obtained in high yields from 2-alkylpyridine 1-oxides via a [3,3]-sigmatropic rearrangement of the adduct between 2-alkylpridine 1-oxides with benzenesulfonyl chlorides. Moreover, alkylnitrones also undergo [3,3]-sigmatropic rearrangement to give α-tosylated ketones after hydrolysis. Substitution reactions with nucleophiles then lead to diverse useful functionalizations for the synthesis of pincer ligands.

19.
Chem Commun (Camb) ; 54(53): 7265-7280, 2018 Jun 28.
Article in English | MEDLINE | ID: mdl-29774912

ABSTRACT

Phosphorus containing molecules have seen widespread applications in the development of innovative metal-ligand catalysts and materials. In recent years, the implementation of late-stage modifications of phosphorus derivatives via ortho-regioselective C-H bond functionalisation has led to faster and better ways for the synthesis of complex ligands by creating new reactions with low impact on the environment. This Feature article highlights transition-metal catalysed regioselective C-H bond functionalisation of phosphorus-containing molecules, in which the phosphorus containing unit plays the role of a directing group for C-H bond activation and the synthesis of new functional phosphorus derivatives.

20.
Org Biomol Chem ; 16(24): 4399-4423, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29786741

ABSTRACT

Palladium-catalyzed reactions using aryl halides as one of the coupling partners represent a very popular method for generating carbon-carbon bonds. However, such couplings suffer from important limitations. As most palladium catalysts are very effective for the cleavage of C-halo bonds (Halo = Cl, Br or I), in many cases, the presence of several halide functional groups on arenes is not tolerated. Since two decades, and especially during the last few years, a new class of coupling partners, benzenesulfonyl and benzenesulfinate derivatives, has emerged as a powerful alternative to aryl halides for the Pd-catalyzed C-C bond formation, as the reactions performed with these substrates generally tolerate C-halo bonds. With these substrates, after a metal-catalyzed desulfitative coupling, a variety of halo-substituted arenes such as biaryls, styrenes, phenylacetylenes, acetophenones, benzonitriles… has been synthesized with high chemoselectivities. The use of these aryl sources allowed the synthesis of molecules containing several halo-substituents including iodo-substituents in only a few steps and provides very simple access to a very wide variety of halo-substituted arenes useful to materials chemists and also to biochemists. In this review, we will summarize the scope of the use of halo-substituted benzenesulfonyls and benzenesulfinates as coupling partners in metal-catalyzed C-C bond formation.

SELECTION OF CITATIONS
SEARCH DETAIL
...