Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Life Sci ; 322: 121664, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37023957

ABSTRACT

AIMS: Sulforaphane (SFN), a naturally occurring isothiocyanate found in cruciferous vegetables, has received extensive attention as a natural activator of the Nrf2/Keap1 cytoprotective pathway. In this review, a meta-analysis and systematic review of the renoprotective effects of SFN were performed in various preclinical models of kidney diseases. MAIN METHODS: The primary outcome was the impact of SFN on renal function biomarkers (uremia, creatininemia, proteinuria or creatinine clearance) and secondary outcomes were kidney lesion histological indices/kidney injury molecular biomarkers. The effects of SFN were evaluated according to the standardized mean differences (SMDs). A random-effects model was applied to estimate the overall summary effect. KEY FINDINGS: Twenty-five articles (out of 209 studies) were selected from the literature. SFN administration significantly increased creatinine clearance (SMD +1.88 95 % CI: [1.09; 2.68], P < 0.0001, I2 = 0 %) and decreased the plasma creatinine (SMD -1.24, [-1.59; -0.88], P < 0.0001, I2 = 36.0 %) and urea (SMD -3.22 [-4.42, -2.01], P < 0.0001, I2 = 72.4 %) levels. SFN administration (median dose: 2.5 mg/kg, median duration: 3 weeks) significantly decreased urinary protein excretion (SMD -2.20 [-2.68; -1.73], P < 0.0001, I2 = 34.1 %). It further improved two kidney lesion histological indices namely kidney fibrosis (SMD -3.08 [-4.53; -1.63], P < 0.0001, I2 = 73.7 %) and glomerulosclerosis (SMD -2.24 [-2.96; -1.53], P < 0.0001, I2 = 9.7 %) and decreased kidney injury molecular biomarkers (SMD -1.51 [-2.00; -1.02], P < 0.0001, I2 = 0 %). SIGNIFICANCE: These findings provide new insights concerning preclinical strategies for treating kidney disease or kidney failure with SFN supplements and should stimulate interest in clinical evaluations of SFN in patients with kidney disease.


Subject(s)
Kidney Diseases , NF-E2-Related Factor 2 , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Creatinine , NF-E2-Related Factor 2/metabolism , Kidney Diseases/drug therapy , Isothiocyanates/pharmacology , Isothiocyanates/therapeutic use , Biomarkers/metabolism
2.
Sci Rep ; 12(1): 20855, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36460743

ABSTRACT

The main goal of this study was to evaluate the reno-protective effects of a phenolic-rich Açaí seed extract (ASE) in mice with kidney failure. Kidney failure was induced chemically with an adenine-rich diet (0.25% w/w for 4 weeks) in male CD1 Swiss mice. Mice were then provided daily with ASE (at a dose of ~ 350 mg/kg/day) in drinking water for 4 weeks. Adenine mice exhibited renal dysfunction evidenced by increased proteinuria, increased uremia, extensive tubular atrophy and kidney fibrosis associated with overexpression of pro-fibrotic genes (collagen 1a1, transforming growth factor ß1, TGF-ß1) and markers of tubular injury (such as Kidney injury molecule-1, KIM-1). ASE was able to beneficially counteract all these effects. ASE improved oxidative damage and fibrosis by decreasing carbonylated protein and MDA concentrations, as well as collagen deposition in renal tissue. ASE decreased the expression of TGF-ß1 gene and the abundance of protein TGF-ß1 in kidneys. It further decreased both expression and urinary excretion of tubular injury biomarkers, e.g., KIM-1 and Neutrophil gelatinase-associated lipocalin. CKD ASE-treated mice exhibited higher polyphenol content and total antioxidant capacity compared to control mice. ASE further prevented the expression of profibrotic genes in HK2 human tubular cells exposed to uremic toxins. Taken together, these findings suggest that ASE exerted potent reno-protective and anti-fibrotic effects through its antioxidant activity and the modulation of the TGF-ß1 pathway.


Subject(s)
Polyphenols , Renal Insufficiency , Humans , Male , Mice , Animals , Polyphenols/pharmacology , Transforming Growth Factor beta1/genetics , Kidney , Antioxidants/pharmacology , Adenine , Fibrosis , Plant Extracts/pharmacology
3.
Exp Physiol ; 105(3): 542-551, 2020 03.
Article in English | MEDLINE | ID: mdl-31876965

ABSTRACT

NEW FINDINGS: What is the central question of this study? Does a polyphenol-rich extract from açaí have a potential role in preventing uraemic toxin-induced endothelial cell dysfunction? What is the main finding and its importance? Polyphenols from açaí prevented cell death, restored migratory capacity, protected from inflammation and contributed to the restoration of the antioxidant response in endothelial cells exposed to uraemic toxins. The protective role of açaí against toxic effects exerted by uraemic toxins presents a potential new therapeutic target in endothelial cells. ABSTRACT: In chronic kidney disease (CKD), progressive loss of kidney function results in the accumulation of protein-bound uraemic toxins such as p-cresyl sulfate (pCS) and indoxyl sulfate (IS). Among strategies to ameliorate the harmful actions of uraemic toxins, phenolic compounds have been extensively studied. The main goal of this work was to evaluate the antioxidant and anti-inflammatory actions of phenolic-rich açaí seed extract (ASE) in response to endothelial dysfunction induced by IS and pCS, in human umbilical vein endothelial cells (HUVECs). Cells were treated with ASE (10 µg ml-1 ) in the presence or absence of IS (61 µg ml-1 ) and pCS (40 µg ml-1 ). Cell viability, cell death, cell migratory capacity and inflammatory biomarker expression were evaluated. Cellular antioxidant response was measured through the activity and expression of antioxidant enzymes, and oxidative damage was evaluated. IS and pCS lowered cell viability, triggered cell death and lowered the migratory capacity in endothelial cells (P < 0.05). ASE prevented cell death and restored the migratory capacity in cells exposed to IS. Both toxins up-regulated pro-inflammatory cytokine expression, and ASE was able to beneficially counteract this effect. Tumour necrosis factor-α secretion was greater in uraemic toxin-treated cells and ASE reversed this phenomenon in cells treated with both toxins concomitantly (P < 0.05). With regard to the antioxidant response, superoxide dismutase expression was strikingly lower in cells treated with both toxins, and ASE inhibited this harmful effect (P < 0.05). From the results, we conclude that ASE exerted protective effects on inflammation and oxidative stress caused by uraemic toxins (particularly by IS) in human endothelial cells.


Subject(s)
Euterpe/chemistry , Human Umbilical Vein Endothelial Cells/drug effects , Inflammation/drug therapy , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Polyphenols/pharmacology , Protective Agents/pharmacology , Antioxidants , Biomarkers/metabolism , Cell Death/drug effects , Cells, Cultured , Cytokines/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Inflammation/metabolism , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Superoxide Dismutase/metabolism
4.
Int Urol Nephrol ; 50(2): 347-354, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29151180

ABSTRACT

PURPOSE: Uremic toxins produced by gut microbiota (indoxyl sulfate-IS, p-cresyl sulfate-p-CS, and indole-3-acetic acid-IAA) accumulate in hemodialysis (HD) patients and exhibit potent inflammatory effects. However, the impact of these toxins on nuclear E2-related factor 2 (Nrf2) and nuclear factor-kappa B (NF-κB) expression in HD patients remains poorly defined. The aim of this study was to evaluate the association between uremic toxins and Nrf2/NF-κB expression in vitro (RAW 264.7 macrophage-like cells) and in peripheral blood mononuclear cells from HD patients. METHODS: Uremic toxins, C-reactive protein (CRP), interleukin-6 (IL-6) and malondialdehyde (MDA) levels were measured in fifteen HD patients and nine healthy individuals. RAW 264.7 macrophage-like cells were incubated with IS, as a prototype of protein-bound uremic toxin. Nrf2 and NF-κB expressions were analyzed by RT-qPCR. RESULTS: HD patients presented high levels of inflammatory markers, MDA and uremic toxins. In addition, they presented high NF-κB and low Nrf2 expression. Uremic toxins were positively correlated with NF-κB expression (IS, ρ = 0.58, p < 0.003; p-CS, ρ = 0.71, p < 0.001; IAA, ρ = 0.62, p < 0.001) and negatively with Nrf2 (IS, ρ = - 0.48, p = 0.01; p-CS, ρ = - 0.46, p < 0.02). Uremic toxins also exhibited positive correlations with CRP and MDA levels. Multivariate analysis revealed that p-CS is a determinant factor of NF-κB expression. In RAW 264.7 culture, NF-κB mRNA expression was stimulated by IS, while Nrf2 was downregulated. CONCLUSIONS: Thus, uremic toxins may stimulate NF-κB mRNA and decrease Nrf2 expression in HD patients and, consequently, trigger inflammation and oxidative stress.


Subject(s)
NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Renal Insufficiency, Chronic , Uremia , Aged , Animals , Cell Culture Techniques , Female , Humans , Inflammation/blood , Inflammation/metabolism , Interleukin-6/blood , Male , Malondialdehyde/blood , Mice , Middle Aged , Oxidative Stress/physiology , Renal Dialysis/adverse effects , Renal Dialysis/methods , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/therapy , Signal Transduction , Uremia/etiology , Uremia/metabolism
5.
Nephron ; 137(1): 1-7, 2017.
Article in English | MEDLINE | ID: mdl-28490014

ABSTRACT

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor involved in the expression of xenobiotic-metabolizing enzymes, inflammatory cytokines and adhesion molecules. Uremic toxins such as indoxyl sulfate and indole acetic acid are derived from tryptophan fermentation by gut microbiota; they accumulate in patients with chronic kidney disease (CKD) on haemodialysis and have recently emerged as potent ligands of AhR. Therefore, AhR can serve as a mediator in inflammation and cardiovascular diseases in these patients. This review discusses current data that support a link between AhR activation and uremic toxins from gut microbiota in CKD.


Subject(s)
Receptors, Aryl Hydrocarbon/metabolism , Renal Insufficiency, Chronic/metabolism , Toxins, Biological/metabolism , Animals , Cardiovascular Diseases/etiology , Glucuronates/metabolism , Humans , Indican/metabolism , Indoleacetic Acids/metabolism , Indoles/metabolism , Models, Biological , Tryptophan/metabolism , Uremia/metabolism
6.
Biochimie ; 125: 53-8, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26945842

ABSTRACT

Uremic toxins are compounds normally excreted in urine that accumulate in patients with chronic kidney disease as a result of decreased renal clearance. Phenylacetic acid (PAA) has been identified as a new protein bound uremic toxin. The purpose of this study was to investigate in vitro the interaction between PAA and human serum albumin (HSA) at physiological and pathological concentrations. We used ultrafiltration to show that there is a single high-affinity binding site for PAA on HSA, with a binding constant on the order of 3.4 × 10(4) M(-1) and a maximal stoichiometry of 1.61 mol per mole. The PAA, at the concentration reported in end-stage renal patients, was 26% bound to albumin. Fluorescent probe competition experiments demonstrated that PAA did not bind to Sudlow's site I (in subdomain IIA) and only weakly bind to Sudlow's site II (in subdomain IIIA). The PAA showed no competition with other protein-bound uremic toxins such as p-cresyl-sulfate or indoxyl sulfate for binding to serum albumin. Our results provide evidence that human serum albumin can act as carrier protein for phenylacetic acid.


Subject(s)
Phenylacetates/chemistry , Serum Albumin/chemistry , Cell Line , Humans , Protein Binding , Protein Domains , Renal Insufficiency, Chronic/blood , Serum Albumin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL