Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 138(30): 9572-80, 2016 08 03.
Article in English | MEDLINE | ID: mdl-27392203

ABSTRACT

Nanoscopic gold particles have gained very high interest because of their promising catalytic activity for various chemicals reactions. Among these reactions, low-temperature CO oxidation is the most extensively studied one due to its practical relevance in environmental applications and the fundamental problems associated with its very high activity at low temperatures. Gold nanoparticles supported on manganese oxide belong to the most active gold catalysts for CO oxidation. Among a variety of manganese oxides, Mn2O3 is considered to be the most favorable support for gold nanoparticles with respect to catalytic activity. Gold on MnO2 has been shown to be significantly less active than gold on Mn2O3 in previous work. In contrast to these previous studies, in a comprehensive study of gold nanoparticles on different manganese oxides, we developed a gold catalyst on MnO2 nanostructures with extremely high activity. Nanosized gold particles (2-3 nm) were supported on α-MnO2 nanowires and mesoporous ß-MnO2 nanowire arrays. The materials were extremely active at very low temperature (-80 °C) and also highly stable at 25 °C (70 h) under normal conditions for CO oxidation. The specific reaction rate of 2.8 molCO·h(-1)·gAu(-1) at a temperature as low as -85 °C is almost 30 times higher than that of the most active Au/Mn2O3 catalyst.

2.
Org Biomol Chem ; 10(5): 1088-92, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22179680

ABSTRACT

We describe the synthesis and coordination behaviour to copper(II) of two close structural triazacyclophane-based mimics of two often encountered aspartic acid and histidine containing metalloenzyme active sites. Coordination of these mimics to copper(I) and their reaction with molecular oxygen leads to the formation of dimeric bis(µ-hydroxo) dicopper(II) complexes.


Subject(s)
Aspartic Acid/chemistry , Aza Compounds/chemistry , Biomimetic Materials/chemistry , Copper/chemistry , Heterocyclic Compounds, 2-Ring/chemistry , Histidine/chemistry , Metalloproteins/chemistry , Aspartic Acid/metabolism , Aza Compounds/metabolism , Biomimetic Materials/metabolism , Catalytic Domain , Coordination Complexes/chemistry , Coordination Complexes/metabolism , Copper/metabolism , Heterocyclic Compounds, 2-Ring/metabolism , Histidine/metabolism , Metalloproteins/metabolism , Oxygen/metabolism
3.
Chemistry ; 17(7): 2077-88, 2011 Feb 11.
Article in English | MEDLINE | ID: mdl-21259348

ABSTRACT

Bimetallic three-dimensional amorphous mesoporous materials, Al-Zr-TUD-1 materials, were synthesised by using a surfactant-free, one-pot procedure employing triethanolamine (TEA) as a complexing reagent. The amount of aluminium and zirconium was varied in order to study the effect of these metals on the Brønsted and Lewis acidity, as well as on the resulting catalytic activity of the material. The materials were characterised by various techniques, including elemental analysis, X-ray diffraction, high-resolution TEM, N(2) physisorption, temperature-programmed desorption (TPD) of NH(3), and (27) Al MAS NMR, XPS and FT-IR spectroscopy using pyridine and CO as probe molecules. Al-Zr-TUD-1 materials are mesoporous with surface areas ranging from 700-900 m(2) g(-1), an average pore size of around 4 nm and a pore volume of around 0.70 cm(3) g(-1). The synthesised Al-Zr-TUD-1 materials were tested as catalyst materials in the Lewis acid catalysed Meerwein-Ponndorf-Verley reduction of 4-tert-butylcyclohexanone, the intermolecular Prins synthesis of nopol and in the intramolecular Prins cyclisation of citronellal. Although Al-Zr-TUD-1 catalysts possess a lower amount of acid sites than their monometallic counterparts, according to TPD of NH(3), these materials outperformed those of the monometallic Al-TUD-1 as well as Zr-TUD-1 in the Prins cyclisation of citronellal. This proves the existence of synergistic properties of Al-Zr-TUD-1. Due to the intramolecular nature of the Prins cyclisation of citronellal, the hydrophilic surface of the catalyst as well as the presence of both Brønsted and Lewis acid sites synergy could be obtained with bimetallic Al-Zr-TUD-1. Besides spectroscopic investigation of the active sites of the catalyst material a thorough testing of the catalyst in different types of reactions is crucial in identifying its specific active sites.

4.
Pharm Res ; 27(10): 2205-12, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20680667

ABSTRACT

PURPOSE: The present study introduces the preparation and in vitro characterization of a nanoparticle device comprising holmium acetylacetonate for radioablation of unresectable solid malignancies. METHODS: HoAcAc nanoparticles were prepared by dissolving holmium acetylacetonate in chloroform, followed by emulsification in an aqueous solution of a surfactant and evaporation of the solvent. The diameter, surface morphology, holmium content, and zeta potential were measured, and thermal behavior of the resulting particles was investigated. The stability of the particles was tested in HEPES buffer. The r(2)* relaxivity of protons and mass attenuation coefficient of the nanoparticles were determined. The particle diameter and surface morphology were studied after neutron activation. RESULTS: Spherical particles with a smooth surface and diameter of 78 ± 10 nm were obtained, and the particles were stable in buffer. Neutron irradiation did not damage the particles, and adequate amounts of activity were produced for nuclear imaging and radioablation of malignancies through intratumoral injections. CONCLUSIONS: The present study demonstrates that HoAcAc nanoparticles were prepared using a solvent evaporation process. The particle diameter can easily be adapted and can be optimized for specific therapeutic applications and tumor types.


Subject(s)
Ablation Techniques/methods , Holmium/administration & dosage , Nanoparticles/chemistry , Neoplasms/radiotherapy , Ablation Techniques/instrumentation , Holmium/chemistry , Humans , Injections, Intralesional , Microscopy, Electron, Scanning , Nanoparticles/administration & dosage , Particle Size , Radioisotopes , Spectroscopy, Fourier Transform Infrared , Surface Properties
5.
Dalton Trans ; (17): 3306-14, 2009 May 07.
Article in English | MEDLINE | ID: mdl-19421633

ABSTRACT

ECE-pincer sulfato palladium complexes (pincer = [C(6)H(3)(CH(2)E)(2)-2,6](-); E = SPh (), SMe (), S(t)Bu (), NMe(2) ()) were synthesized and characterized. In the solid-state (X-ray determinations) and exist as neutral ECE-pincer palladium sulfato complexes with a mu(2)-O,O' bridging sulfato ligand. IR and Raman spectroscopic studies revealed that in the solid-state the complexes can be present as either solely neutral or as a mixture of neutral and ionic species, depending on the preparation and morphology of the solids. In water, ionic complexes with non-coordinating sulfate ions prevail. Preliminary studies of the catalytic activity of in the Suzuki-Miyaura C-C cross-coupling reaction of 3-iodobenzoic acid and sodium tetraphenylborate in water reveal that the C-C cross-coupling product is efficiently formed in good yields at room temperature.


Subject(s)
Palladium/chemistry , Sulfates/chemistry , Catalysis , Crystallography, X-Ray , Models, Molecular , Molecular Structure , Solutions , Spectrum Analysis, Raman
6.
Inorg Chem ; 47(15): 6863-6, 2008 Aug 04.
Article in English | MEDLINE | ID: mdl-18593113

ABSTRACT

We report here a simple one-pot directed synthesis of an oxomolybdate urea composite in which elementary molybdenum oxide building blocks are linked together with the aid of urea. This type of directed material design resulted in large rod-like crystals of an inorganic-organic hybrid extended structure of {MoO 3(NH 2-CO-NH 2)} infinity consisting of right- and left-handed helical units. In the crystal structure urea acts both as a glue that links the inorganic molybdenum units into a helix and as a supramolecular linker for the stabilization of the crystal structure as a whole. This type of molecular topology resulted in an unexpectedly high thermal stability.

7.
Dalton Trans ; (21): 2861-5, 2008 Jun 07.
Article in English | MEDLINE | ID: mdl-18478149

ABSTRACT

The polyoxometalates or POMs (clusters comprising at least two metal and many oxygen atoms) have recently gained significant interest owing to their versatile architecture and especially their catalytic activities. Due to their high catalytic activity but low surface area, there is always a demand for making high surface area POMs. This work demonstrates the attachment of the anionic (Mo72Fe30) POMs to gibbsite nanoplatelets with a residual positive charge to form large surface area composites. The resulting composite reported here has been characterized using cryo-TEM imaging, EDX/STEM (elemental) analysis, ATR-IR spectroscopy, SAXS, electrophoretic mobility determination and XRD. The composite reported here could find application in catalysis.


Subject(s)
Aluminum Hydroxide/chemistry , Iron/chemistry , Molybdenum/chemistry , Oxygen/chemistry , Crystallization , Particle Size , Surface Properties
8.
Appl Spectrosc ; 62(4): 414-22, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18416900

ABSTRACT

Research has been carried out to determine the feasibility of chemometric modeling of infrared (IR) and near-infrared (NIR) spectra of crude oils to predict the long residue (LR) and short residue (SR) properties of these samples. A novel method is described to predict short residue properties at different flashing temperatures based on the IR spectrum of a crude oil measured at room temperature. The resulting method is the subject of European patent application number 07251853.3 filed by Shell Internationale Research Maatschappij B.V. The study has been carried out on 47 crude oils and 4 blends, representing a large variety of physical and chemical properties. From this set, 28 representative samples were selected by principle component analysis (PCA) and used for calibration. The remaining 23 samples were used as a test set to validate the obtained partial least squares (PLS) regression models. The results demonstrate that this integrated approach offers a fast and viable alternative for the currently applied elaborate ASTM (American Society for Testing and Materials) and IP (Institute of Petroleum) methods. IR spectra, in particular, were found to be a useful input for the prediction of different LR properties. Root mean square error of prediction values of the same order of magnitude as the reproducibility values of the ASTM methods were obtained for yield long on crude (YLC), density (D(LR)), viscosity (V(LR)), and pour point (PP), while the ability to predict the sulfur contents (S) and the carbon residue (CR) was found to be useful for indicative purposes. The prediction of SR properties is also promising. Modeling of the IR spectra, and to a lesser extent, the NIR spectra as a function of the average flash temperature (AFT) was particularly successful for the prediction of the short residue properties density (D(SR)) and viscosity (V(SR)). Similar results were obtained from the models to predict SR properties as a function of the yield short on crude (YSC) values. Finally, it was concluded that the applied protocol including sample pretreatment and instrumental measurement is highly reproducible and instrument and accessory independent.

9.
Chem Commun (Camb) ; (46): 4895-7, 2007 Dec 14.
Article in English | MEDLINE | ID: mdl-18361361

ABSTRACT

We report the use of triazacyclophane (TAC)-scaffolded amino acids as a structural mimic for 3-histidine metal-binding sites in metalloproteins, especially for the mimicry of type-3 copper binding sites as are present in hemocyanin, tyrosinase and catechol oxidase.


Subject(s)
Amino Acids/chemistry , Copper/metabolism , Metalloproteins/chemistry , Binding Sites , Catechol Oxidase/chemistry , Copper/chemistry , Hemocyanins/chemistry , Histidine/chemistry , Indicators and Reagents , Molecular Conformation , Molecular Mimicry , Monophenol Monooxygenase/chemistry , Oxygen/chemistry , Spectrophotometry, Infrared , Spectrophotometry, Ultraviolet , Spectrum Analysis, Raman , Vibration
10.
Chemistry ; 12(27): 7167-77, 2006 Sep 18.
Article in English | MEDLINE | ID: mdl-16807946

ABSTRACT

Structural analysis has been carried out on copper(II)-histidine (Cu(2+)/His) complexes after immobilization in the pore system of the zeolites NaY and de-aluminated NaY (DAY). The aim of this study was to determine the geometrical structure of Cu(2+)/His complexes after encaging, to obtain insight into both the effect of the zeolite matrix on the molecular structure and redox properties of the immobilized complexes. In addition to N(2) physisorption and X-ray fluorescence (XRF) analyses, a combination of UV/Vis/NIR, ESR, X-ray absorption (EXAFS and XANES), IR, and Raman spectroscopy was used to obtain complementary information on both the first coordination shell of the copper ion and the orientation of the coordinating His ligands. It was demonstrated that two complexes (A and B) are formed, of which the absolute and relative abundance depends on the Cu(2+)/His concentration in the ion-exchange solution and on the Si/Al ratio of the zeolite material. In complex A, one His ligand coordinates in a tridentate facial-like manner through N(am), N(im), and O(c), a fourth position being occupied by an oxygen atom from a zeolite Brønsted site. In complex B, two His ligands coordinate as bidentate ligands; one histamine-like (N(am), N(im)) and the other one glycine-like (N(am), O(c)). In particular the geometrical structure of complex A differs from the preferred structure of Cu(2+)/His complexes in aqueous solutions; this fact implies that the zeolite host material actively participates in the coordination and orientation of the guest molecules. The tendency for complex A to undergo reduction in inert atmosphere to Cu(1+) (as revealed by dynamic XANES studies) suggests activation of complex A by the interaction with the zeolite material. EXAFS analysis confirms the formation of a distorted four coordinate geometry of complex A, suggesting that the combination of zeolite and one His ligand force the Cu(2+) complex into an activated, entactic state.


Subject(s)
Copper/chemistry , Histidine/chemistry , Zeolites/chemistry , Electron Spin Resonance Spectroscopy , Spectrometry, X-Ray Emission , Spectrophotometry, Infrared , Spectrophotometry, Ultraviolet
11.
Inorg Chem ; 45(5): 1960-71, 2006 Mar 06.
Article in English | MEDLINE | ID: mdl-16499357

ABSTRACT

Aqueous solutions of Cu2+/histidine (his) (1:2) have been analyzed in parallel with infrared, Raman, ultraviolet/visible/near-infrared, electron spin resonance, and X-ray absorption spectroscopy in the pH range from 0 to 10. Comprehensive interpretation of the data has been used to extract complementary structural information in order to determine the relative abundance of the different complexes. The formation of six different, partly coexisting species is proposed. Structural proposals from literature have been unambiguously confirmed, refined, or, in several cases, corrected. At highly acidic conditions, Cu2+ and his are present as free ions, but around pH = 2, coordination starts via the deprotonated carboxylic acid group. This results in the intermediate species Cu2+[H3his+(Oc)] and Cu2+[H3his+(Oc)]2. The coordination via Oc is attended with a drop in the pKa value of the other receptor groups resulting in a concomitant conversion to the bidentates Cu2+[H2his0(Oc,Nam)] and Cu2+[H2his0(Oc,Nam)]2, with the latter being dominant at pH = 3.5. Coordination of the imidazole ring begins around pH = 3 and leads to the formation of the mixed ligand complexes Cu2+[H2his0(Oc,Nam)][Hhis-(Oc,Nam,Nim)] and Cu2+[Hhis-(Nam,Nim)][Hhis-(Oc,Nam,Nim)] around pH = 5. It is demonstrated that coordination of the imidazole ring occurs predominantly via the N(pi) atom. At pH > 7, the double-tridentate ligand complex Cu2+[Hhis-(Oc,Nam,Nim)]2 is the major species with the N atoms in the equatorial plane and the O atoms in the axial position. This complex decomposes at pH > 10 into a copper oxide/hydroxide precipitate. The overall results provide a consistent picture of the mechanism that drives the coordination and complex formation of the Cu2+/his system.

12.
Inorg Chem ; 44(19): 6567-78, 2005 Sep 19.
Article in English | MEDLINE | ID: mdl-16156615

ABSTRACT

Two homoleptic pyridyl-functionalized C,N-ortho-chelating aminoaryl platinum(II) complexes, cis-[Pt(eta(2)-C,N)] (3a,b), were prepared via an unconventional method involving the initial synthesis of a bromide-functionalized C,N-chelating aminoaryl platinum(II) precursor complex 8, to which subsequently pyridyl groups were attached via a Suzuki-Miyaura C-C coupling reaction. The electron-donating properties of the pyridyl nitrogen atoms of the resulting complexes (3a,b) were used in complexation reactions with monocationic NCN-pincer (NCN = [C6H3(CH2NMe2)(2-)2,6]-) platinum(II) (11a) and palladium(II) (12a) nitrate complexes [M(NCN)(NO3)], thereby obtaining four trimetallic coordination complexes 16-19. The difference in the pyridine-metal coordination behavior between platinum and palladium was studied by varying the ratios of the reagents and by variable-temperature NMR experiments. IR and Raman analyses of 11a and 12a were performed to determine the coordination behavior of the nitrate counteranion, and it was found that both NO3- and H2O coordinate to the metal centers. The crystal structure determinations of free pyridyl complex 3a, [Pt(NCN)(NO3)] (11a), and [Pt(NCN)(NO3)].(H2O) (11b), as well as the crystal structure of trisplatinum coordination complex 16, are reported.

13.
Langmuir ; 20(21): 9388-95, 2004 Oct 12.
Article in English | MEDLINE | ID: mdl-15461534

ABSTRACT

Amphiphilic AB block copolymers consisting of thermosensitive poly(N-(2-hydroxypropyl) methacrylamide lactate) and poly(ethylene glycol), pHPMAmDL-b-PEG, were synthesized via a macroinitiator route. Dynamic light scattering measurements showed that these block copolymers form polymeric micelles in water with a size of around 50 nm by heating of an aqueous polymer solution from below to above the critical micelle temperature (cmt). The critical micelle concentration as well as the cmt decreased with increasing pHPMAmDL block lengths, which can be attributed to the greater hydrophobicity of the thermosensitive block with increasing molecular weight. Cryogenic transmission electron microscopy analysis revealed that the micelles have a spherical shape with a narrow size distribution. 1H NMR measurements in D2O showed that the intensity of the peaks of the protons from the pHPMAmDL block significantly decreased above the cmt, indicating that the thermosensitive blocks indeed form the solidlike core of the micelles. Static light scattering measurements demonstrated that pHPMAmDL-b-PEG micelles with relatively large pHPMAmDL blocks possess a highly packed core that is stabilized by a dense layer of swollen PEG chains. FT-IR analysis indicated that dehydration of amide bonds in the pHPMAmDL block occurs when the polymer dissolved in water is heated from below to above its cmt. The micelles were stable when an aqueous solution of micelles was incubated at 37 degrees C and at pH 5.0, where the hydrolysis rate of lactate side groups is minimized. On the other hand, at pH 9.0, where hydrolysis of the lactic acid side groups occurs, the micelles started to swell after 1.5 h of incubation and complete dissolution of micelles was observed after 4 h as a result of hydrophilization of the thermosensitive block. Fluorescence spectroscopy measurements with pyrene loaded in the hydrophobic core of the micelles showed that when these micelles were incubated at pH 8.6 and at 37 degrees C the microenvironment of pyrene became increasingly hydrated in time during this swelling phase. The results demonstrate the potential applicability of pHPMAmDL-b-PEG block copolymer micelles for the controlled delivery of hydrophobic drugs.


Subject(s)
Micelles , Polymers/chemistry , Temperature , Acrylamides/chemical synthesis , Acrylamides/chemistry , Chemical Phenomena , Chemistry, Physical , Lactates/chemical synthesis , Lactates/chemistry , Molecular Structure , Particle Size , Polyethylene Glycols/chemical synthesis , Polyethylene Glycols/chemistry , Polymers/chemical synthesis , Polymethacrylic Acids/chemical synthesis , Polymethacrylic Acids/chemistry , Surface Properties , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...