Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Breed Sci ; 72(4): 297-305, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36699820

ABSTRACT

'Kitahonami' is a soft red winter wheat (Triticum aestivum L.) cultivar that has high yield, good agronomic performance and good quality characteristics. It currently accounts for 73% of the wheat cultivation area of Hokkaido the northern island in Japan and 42% of Japan's overall wheat cultivation. However, this cultivar is susceptible to Wheat yellow mosaic virus (WYMV). WYMV has become widespread recently, with serious virus damage reported in Tokachi and Ohotsuku districts, which are the main wheat production areas in Hokkaido. Here, we report a new wheat breeding line 'Kitami-94', which was developed over four years by repeated backcrossing with 'Kitahonami' using DNA markers for WYMV resistance linked to the Qym1 and Qym2 from 'Madsen'. Basic maps of Qym1 and Qym2 were created and used to confirm that 'Kitami-94' reliably carried the two resistance genes. 'Kitami-94' demonstrated WYMV resistance, and had agronomic traits and quality equivalent to 'Kitahonami' except for higher polyphenol oxidase activity and lower thousand grain weight. 'Kitami-94' may be useful for elucidating the mechanism of WYMV resistance in the background of 'Kitahonami', and for developing new cultivars.

2.
Breed Sci ; 70(3): 373-378, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32714060

ABSTRACT

Wheat yellow mosaic (WYM) is a soilborne disease caused by Wheat yellow mosaic virus (WYMV). Symptoms include yellow mosaic coloring of leaves, stunting, and growth inhibition. Severe infection may result in yield loss. WYM is one of the most serious diseases affecting wheat production in East Asia. The most effective control is through breeding resistant cultivars. A winter wheat cultivar, 'OW104', shows little to no symptoms in heavily WYMV-infested fields in Hokkaido, Japan. Here we detected Qym4, a QTL accounting for 45%-57% of WYMV resistance, in the vicinity of the markers Xcfd49, Xbarc183, and Xgpw4357 on wheat chromosome arm 6DS. F3 progenies with 'OW104' allele at Qym4 showed significantly higher resistance than those with 'Hokushin' homozygote or heterozygote. We developed 'Hokushin' near-isogenic lines by backcrossing with 'Hokushin' as the recurrent parent and 'OW104' as the resistance donor. All the WYMV-resistant BC5F1/BC4F1 plants carried 'OW104' allele only at Xcfd49. Our results suggest that the introduction of Qym4 confers resistance to WYMV in winter wheat.

3.
Breed Sci ; 64(4): 404-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25914596

ABSTRACT

The yellowing strain of Soybean dwarf virus (SbDV-YS) causes yellowing and yield loss in common bean (Phaseolus vulgaris). The most effective control is achieved through breeding for resistance. An indeterminate climbing cultivar with a white seed coat, 'Oofuku', is resistant to SbDV-YS in inoculation tests. We crossed 'Oofuku' with an elite cultivar, 'Taisho-Kintoki', which is SbDV-YS-susceptible, determinate dwarf with a red-purple seed coat, and performed amplified-fragment-length polymorphism analysis of F3 lines. From nucleotide sequences of the resistant-specific fragments and their flanking regions, we developed five DNA markers, of which DV86, DV386, and DV398 were closely linked to Sdvy-1, a resistance gene. Using the markers, we developed 'Toiku-B79' and 'Toiku-B80', the near-isogenic lines (NILs) incorporating Sdvy-1 in the background of 'Taisho-Kintoki'. The NILs had similar growth habit, maturity date and seed shape to those of 'Taisho-Kintoki'. The quality of boiled beans was also similar, except that the NILs had more seed coat cracking than 'Taisho-Kintoki'. The NILs showed no SbDV-YS infection in inoculation tests. We suggest that Sdvy-1 is a useful source of SbDV-YS resistance in common bean.

SELECTION OF CITATIONS
SEARCH DETAIL
...