Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 95(4): 046601, 2005 Jul 22.
Article in English | MEDLINE | ID: mdl-16090829

ABSTRACT

We demonstrate that the flow of a longitudinal unpolarized current through a ballistic two-dimensional electron gas with Rashba spin-orbit coupling will induce a nonequilibrium spin accumulation which has opposite signs for the two lateral edges and is, therefore, the principal observable signature of the spin Hall effect in two-probe semiconductor nanostructures. The magnitude of its out-of-plane component is gradually diminished by static disorder, while it can be enhanced by an in-plane transverse magnetic field. Moreover, our prediction of the longitudinal component of the spin Hall accumulation, which is insensitive to the reversal of the bias voltage, offers direct evidence to differentiate experimentally between the extrinsic, intrinsic, and mesoscopic spin Hall mechanisms.

2.
Phys Rev Lett ; 94(10): 106602, 2005 Mar 18.
Article in English | MEDLINE | ID: mdl-15783503

ABSTRACT

We propose an all-electrical nanostructure where pure spin current is induced in the transverse voltage probes attached to a quantum-coherent ballistic one-dimensional ring when unpolarized charge current is injected through its longitudinal leads. Tuning of the Rashba spin-orbit coupling in a semiconductor heterostructure hosting the ring generates quasiperiodic oscillations of the predicted spin-Hall current due to spin-sensitive quantum-interference effects caused by the difference in the Aharonov-Casher phase accumulated by opposite spin states. Its amplitude is comparable to that of the spin-Hall current predicted for finite-size (simply connected) two-dimensional electron gases, while it gets reduced gradually in wide two-dimensional rings or due to spin-independent disorder.

SELECTION OF CITATIONS
SEARCH DETAIL
...