Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 15(7): 11285-11295, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34139125

ABSTRACT

Many promising optoelectronic devices, such as broadband photodetectors, nonlinear frequency converters, and building blocks for data communication systems, exploit photoexcited charge carriers in graphene. For these systems, it is essential to understand the relaxation dynamics after photoexcitation. These dynamics contain a sub-100 fs thermalization phase, which occurs through carrier-carrier scattering and leads to a carrier distribution with an elevated temperature. This is followed by a picosecond cooling phase, where different phonon systems play a role: graphene acoustic and optical phonons, and substrate phonons. Here, we address the cooling pathway of two technologically relevant systems, both consisting of high-quality graphene with a mobility >10 000 cm2 V-1 s-1 and environments that do not efficiently take up electronic heat from graphene: WSe2-encapsulated graphene and suspended graphene. We study the cooling dynamics using ultrafast pump-probe spectroscopy at room temperature. Cooling via disorder-assisted acoustic phonon scattering and out-of-plane heat transfer to substrate phonons is relatively inefficient in these systems, suggesting a cooling time of tens of picoseconds. However, we observe much faster cooling, on a time scale of a few picoseconds. We attribute this to an intrinsic cooling mechanism, where carriers in the high-energy tail of the hot-carrier distribution emit optical phonons. This creates a permanent heat sink, as carriers efficiently rethermalize. We develop a macroscopic model that explains the observed dynamics, where cooling is eventually limited by optical-to-acoustic phonon coupling. These fundamental insights will guide the development of graphene-based optoelectronic devices.

2.
Sci Adv ; 7(15)2021 Apr.
Article in English | MEDLINE | ID: mdl-33827824

ABSTRACT

Graphene is conceivably the most nonlinear optoelectronic material we know. Its nonlinear optical coefficients in the terahertz frequency range surpass those of other materials by many orders of magnitude. Here, we show that the terahertz nonlinearity of graphene, both for ultrashort single-cycle and quasi-monochromatic multicycle input terahertz signals, can be efficiently controlled using electrical gating, with gating voltages as low as a few volts. For example, optimal electrical gating enhances the power conversion efficiency in terahertz third-harmonic generation in graphene by about two orders of magnitude. Our experimental results are in quantitative agreement with a physical model of the graphene nonlinearity, describing the time-dependent thermodynamic balance maintained within the electronic population of graphene during interaction with ultrafast electric fields. Our results can serve as a basis for straightforward and accurate design of devices and applications for efficient electronic signal processing in graphene at ultrahigh frequencies.

3.
Nat Commun ; 11(1): 4094, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32796825

ABSTRACT

Combining the quantum optical properties of single-photon emitters with the strong near-field interactions available in nanophotonic and plasmonic systems is a powerful way of creating quantum manipulation and metrological functionalities. The ability to actively and dynamically modulate emitter-environment interactions is of particular interest in this regard. While thermal, mechanical and optical modulation have been demonstrated, electrical modulation has remained an outstanding challenge. Here we realize fast, all-electrical modulation of the near-field interactions between a nanolayer of erbium emitters and graphene, by in-situ tuning the Fermi energy of graphene. We demonstrate strong interactions with a  >1000-fold increased decay rate for  ~25% of the emitters, and electrically modulate these interactions with frequencies up to 300 kHz - orders of magnitude faster than the emitter's radiative decay (~100 Hz). This constitutes an enabling platform for integrated quantum technologies, opening routes to quantum entanglement generation by collective plasmon emission or photon emission with controlled waveform.

4.
Nano Lett ; 19(12): 9029-9036, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31742413

ABSTRACT

Due to its outstanding electrical properties and chemical stability, graphene finds widespread use in various electrochemical applications. Although the presence of electrolytes strongly affects its electrical conductivity, the underlying mechanism has remained elusive. Here, we employ terahertz spectroscopy as a contact-free means to investigate the impact of ubiquitous cations (Li+, Na+, K+, and Ca2+) in aqueous solution on the electronic properties of SiO2-supported graphene. We find that, without applying any external potential, cations can shift the Fermi energy of initially hole-doped graphene by ∼200 meV up to the Dirac point, thus counteracting the initial substrate-induced hole doping. Remarkably, the cation concentration and cation hydration complex size determine the kinetics and magnitude of this shift in the Fermi level. Combined with theoretical calculations, we show that the ion-induced Fermi level shift of graphene involves cationic permeation through graphene. The interfacial cations located between graphene and SiO2 electrostatically counteract the substrate-induced hole doping effect in graphene. These insights are crucial for graphene device processing and further developing graphene as an ion-sensing material.

SELECTION OF CITATIONS
SEARCH DETAIL
...