Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 7(1): 118, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38253781

ABSTRACT

Neuroscientific research has consistently shown more extensive non-visual activity in the visual cortex of congenitally blind humans compared to sighted controls; a phenomenon known as crossmodal plasticity. Whether or not crossmodal activation of the visual cortex retracts if sight can be restored is still unknown. The present study, involving a rare group of sight-recovery individuals who were born pattern vision blind, employed visual event-related potentials to investigate persisting crossmodal modulation of the initial visual cortical processing stages. Here we report that the earliest, stimulus-driven retinotopic visual cortical activity (<100 ms) was suppressed in a spatially specific manner in sight-recovery individuals when concomitant sounds accompanied visual stimulation. In contrast, sounds did not modulate the earliest visual cortical response in two groups of typically sighted controls, nor in a third control group of sight-recovery individuals who had suffered a transient phase of later (rather than congenital) visual impairment. These results provide strong evidence for persisting crossmodal activity in the visual cortex after sight recovery following a period of congenital visual deprivation. Based on the time course of this modulation, we speculate on a role of exuberant crossmodal thalamic input which may arise during a sensitive phase of brain development.


Subject(s)
Blindness , Visual Cortex , Humans , Visual Perception , Sound , Thalamus
2.
Neuroimage ; 275: 120171, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37196987

ABSTRACT

Congenital blindness leads to profound changes in electroencephalographic (EEG) resting state activity. A well-known consequence of congenital blindness in humans is the reduction of alpha activity which seems to go together with increased gamma activity during rest. These results have been interpreted as indicating a higher excitatory/inhibitory (E/I) ratio in visual cortex compared to normally sighted controls. Yet it is unknown whether the spectral profile of EEG during rest would recover if sight were restored. To test this question, the present study evaluated periodic and aperiodic components of the EEG resting state power spectrum. Previous research has linked the aperiodic components, which exhibit a power-law distribution and are operationalized as a linear fit of the spectrum in log-log space, to cortical E/I ratio. Moreover, by correcting for the aperiodic components from the power spectrum, a more valid estimate of the periodic activity is possible. Here we analyzed resting state EEG activity from two studies involving (1) 27 permanently congenitally blind adults (CB) and 27 age-matched normally sighted controls (MCB); (2) 38 individuals with reversed blindness due to bilateral, dense, congenital cataracts (CC) and 77 age-matched sighted controls (MCC). Based on a data driven approach, aperiodic components of the spectra were extracted for the low frequency (Lf-Slope 1.5 to 19.5 Hz) and high frequency (Hf-Slope 20 to 45 Hz) range. The Lf-Slope of the aperiodic component was significantly steeper (more negative slope), and the Hf-Slope of the aperiodic component was significantly flatter (less negative slope) in CB and CC participants compared to the typically sighted controls. Alpha power was significantly reduced, and gamma power was higher in the CB and the CC groups. These results suggest a sensitive period for the typical development of the spectral profile during rest and thus likely an irreversible change in the E/I ratio in visual cortex due to congenital blindness. We speculate that these changes are a consequence of impaired inhibitory circuits and imbalanced feedforward and feedback processing in early visual areas of individuals with a history of congenital blindness.


Subject(s)
Cataract , Eye Abnormalities , Visual Cortex , Adult , Humans , Blindness/congenital , Electroencephalography , Vision Disorders
3.
Cortex ; 144: 15-28, 2021 11.
Article in English | MEDLINE | ID: mdl-34562698

ABSTRACT

Humans with a transient phase of congenital pattern vision deprivation have been observed to feature prevailing deficits, particularly in higher order visual functions. However, the neural correlates of these prevalent visual impairments remain unclear. To probe different visual processing stages, we measured steady state visual evoked potentials (SSVEPs) generated by luminance flicker stimuli at 6.1 Hz, with superimposed horizontal periodic motion at 2.1 Hz or 2.4 Hz. SSVEP responses at the fundamental and second harmonic of luminance flicker frequency, and at their intermodulation frequencies with motion information, were analyzed. Three groups were tested: (1) 15 individuals who had suffered a lack of pattern vision from birth due to the presence of bilateral total congenital cataracts (CC group), which were surgically removed between 4 months and 22 years of age, (2) 13 individuals with reversed developmental i.e., later developing cataracts (DC group), and (3) normally sighted control participants (SC group; n = 13) matched in age and sex to the CC individuals. SSVEPs at the second harmonic frequency (i.e., 12.2 Hz) and at the intermodulation frequencies (8.2 Hz, and 8.5 Hz) were attenuated in the CC group. In contrast, fundamental frequency responses (i.e., at 6.1 Hz) were not significantly altered in the CC group compared to the control groups (SC and DC groups). Based on previous evidence on the role of striate vs. extrastriate generators of fundamental vs. second harmonics of SSVEPs, these results provide evidence for a stronger experience dependence of extrastriate than striate cortical processing, and furthermore, suggest a sensitive period for the development of putative nonlinear neural mechanisms hypothesized to mediate visual feature binding.


Subject(s)
Electroencephalography , Evoked Potentials, Visual , Evoked Potentials , Humans , Photic Stimulation , Vision, Ocular , Visual Perception
4.
EClinicalMedicine ; 27: 100559, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33073221

ABSTRACT

BACKGROUND: Untreated congenital blindness through cataracts leads to lasting visual brain system changes, including substantial alterations of extrastriate visual areas. Consequently, late-treated individuals (> 5 months of age) with dense congenital bilateral cataracts (CC) exhibit poorer visual function recovery compared to individuals with bilateral developmental cataracts (DC). Reliable methods to differentiate between patients with congenital and developmental cataracts are often lacking, impeding efficient rehabilitation management and introducing confounds in clinical and basic research on recovery prognosis and optimal timing of surgery. A persistent reduction of the P1 wave of visual event-related potentials (VERPs), associated with extrastriate visual cortical activity, has been reported in CC but not in DC individuals. Using two experiments, this study developed and validated P1-based biomarkers for diagnosing a history of congenital blindness in cataract-reversal individuals. METHODS: Congenital and developmental cataract-reversal individuals as well as typically sighted matched controls took part in a first experiment used for exploring an electrophysiological biomarker (N CC = 13, N DC = 13, N Control = 26). Circular stimuli containing gratings were presented in one of the visual field quadrants while visual event-related potentials (VERPs) were recorded. Two biomarkers were derived from the P1 wave of the VERP: (1) The mean of the normalized P1 amplitude at posterior electrodes, and (2) a classifier obtained from a linear support vector machine (SVM). A second experiment with partially new CC/DC individuals and their matched controls (N CC = 14, N DC = 15, N Control = 29) was consecutively used to validate the classification based on both biomarkers. Performance of the classifiers were evaluated using receiver operating characteristic (ROC) curve analyses. All cataract-reversal individuals were tested after at least one year of vision recovery. FINDINGS: The normalized P1 amplitude over posterior electrodes allowed a successful classification of the CC from the DC individuals and typically sighted controls (area under ROC curve, AUC = 0.803 and 0.929 for the normalized P1 amplitude and the SVM-based biomarker, respectively). The validation for both biomarkers in experiment 2 again resulted in a high classification success (AUC = 0.800 and 0.883, respectively for the normalized P1 amplitude and the SVM-based biomarker). In the most conservative scenario involving classification of CC from DC individuals in a group of only cataract-reversal individuals, excluding typically sighted controls, the SVM-based biomarker was found to be superior to the mean P1 amplitude based biomarker (AUC = 0.852 compared to 0.757 for the mean P1 based biomarker in validation). Minimum specificity obtained was 80% across all biomarkers. INTERPRETATION: A persistent reduction of the P1 wave provides a highly specific method for classifying cataract patients post-surgically as having suffered from bilateral congenital vs. bilateral developmental cataracts. We suggest that using the P1 based non-invasive electrophysiological biomarker will augment existing clinical classification criteria for individuals with a history of bilateral congenital cataracts, aiding clinical and basic research, recovery prognosis, and rehabilitation efforts. FUNDING: German Research Foundation (DFG) and the European Research Council (ERC).

5.
eNeuro ; 7(5)2020.
Article in English | MEDLINE | ID: mdl-33060179

ABSTRACT

Visual input during the first years of life is vital for the development of numerous visual functions. While normal development of global motion perception seems to require visual input during an early sensitive period, the detection of biological motion (BM) does not seem to do so. A more complex form of BM processing is the identification of human actions. Here, we tested whether identification rather than detection of BM is experience dependent. A group of human participants who had been treated for congenital cataracts (CC; of up to 18 years in duration, CC group) had to identify ten actions performed by human line figures. In addition, they performed a coherent motion (CM) detection task, which required identifying the direction of CM amid the movement of random dots. As controls, developmental cataract (DC) reversal individuals (DC group) who had undergone the same surgical treatment as CC group were included. Moreover, normally sighted controls were tested both with vision blurred to match the visual acuity (VA) of CC individuals [vision matched (VM) group] and with full sight [sighted control (SC) group]. The CC group identified biological actions with an extraordinary high accuracy (on average ∼85% correct) and was indistinguishable from the VM control group. By contrast, CM processing impairments of the CC group persisted even after controlling for VA. These results in the same individuals demonstrate an impressive resilience of BM processing to aberrant early visual experience and at the same time a sensitive period for the development of CM processing.


Subject(s)
Motion Perception , Humans , Motion , Movement , Visual Acuity
6.
Restor Neurol Neurosci ; 37(6): 583-590, 2019.
Article in English | MEDLINE | ID: mdl-31839614

ABSTRACT

BACKGROUND: Color vision has been consistently shown to be unaffected in animals that are raised in dark or in color-deprived environments. However, there are only a few studies that directly addressed the effect of congenital visual deprivation in color perception in humans. OBJECTIVE: The goal of the current study was to assess the effect of congenital visual deprivation on color vision using a panel based color arrangement test. METHODS: We investigated the recovery of color vision using the Farnsworth D15 test in a group of individuals who had experienced visual deprivation since birth due to bilateral dense congenital cataracts before undergoing cataract-reversal surgery (Congenital cataract, CC, n = 12). In addition, we tested two groups of control participants: (1) individuals who had had non-dense congenital cataract or developed cataract later in their childhood (Developmental cataract, DC, n = 10), and (2) sighted controls with normal or corrected to normal vision (n = 14). Based on the methods proposed by Vingrys and King-Smith (1988), we derived the following metrics of color vision performance: (1) total error score, (2) confusion index, (3) confusion angle, and (4) selectivity index. RESULTS: All of the measured indices of color vision performance were unaltered by a period of congenital visual deprivation. CONCLUSIONS: Our results support the view that, development of visual functions such as color discrimination and color arrangement does not depend on typical visual experience during a sensitive phase in early childhood.


Subject(s)
Cataract Extraction/trends , Cataract/diagnosis , Color Vision/physiology , Recovery of Function/physiology , Vision Tests/methods , Adolescent , Adult , Cataract/physiopathology , Child , Female , Humans , Infant , Male , Young Adult
7.
Psychol Sci ; 30(10): 1473-1482, 2019 10.
Article in English | MEDLINE | ID: mdl-31483197

ABSTRACT

Humans preferentially match arbitrary words containing higher- and lower-frequency phonemes to angular and smooth shapes, respectively. Here, we investigated the role of visual experience in the development of audiovisual and audiohaptic sound-shape associations (SSAs) using a unique set of five groups: individuals who had suffered a transient period of congenital blindness through congenital bilateral dense cataracts before undergoing cataract-reversal surgeries (CC group), individuals with a history of developmental cataracts (DC group), individuals with congenital permanent blindness (CB group), individuals with late permanent blindness (LB group), and controls with typical sight (TS group). Whereas the TS and LB groups showed highly robust SSAs, the CB, CC, and DC groups did not-in any of the modality combinations tested. These results provide evidence for a protracted sensitive period during which aberrant vision prevents SSA acquisition. Moreover, the finding of a systematic SSA in the LB group demonstrates that representations acquired during the sensitive period are resilient to loss despite dramatically changed experience.


Subject(s)
Auditory Perception , Blindness/surgery , Vision, Ocular , Visual Perception , Adolescent , Adult , Cataract Extraction , Child , Female , Humans , Male , Middle Aged , Motion , Visual Cortex/physiology , Young Adult
8.
J Vis ; 18(3): 22, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29677338

ABSTRACT

Numerous studies in visually deprived nonhuman animals have demonstrated sensitive periods for the functional development of the early visual cortex. However, in humans it is yet unknown which visual areas are shaped to which degree based on visual experience. The present study investigated the functional organization and processing capacities of early visual cortex in sight recovery individuals with either a history of congenital cataracts (CC) or late onset cataracts (developmental cataracts, DC). Visual event-related potentials (VERPs) were recorded to grating stimuli which were flashed in one of the four quadrants of the visual field. Participants had to detect rarely occurring grating orientations. The CC individuals showed the expected polarity reversal of the C1 wave between upper and lower visual field stimuli at the typical latency range. Since the C1 has been proposed to originate in the early retinotopic visual cortex, we concluded that one basic feature of the retinotopic organization, upper versus lower visual field organization, is spared in CC individuals. Group differences in the size and topography of the C1 effect, however, suggested a less precise functional tuning. The P1 wave, which has been associated with extrastriate visual cortex processing, was significantly attenuated in CC but not in DC individuals compared to typically sighted controls. The present study thus provides evidence for fundamental aspects of retinotopic processing in humans being independent of developmental vision. We suggest that visual impairments in sight recovery individuals may predominantly arise at higher cortical processing stages.


Subject(s)
Cataract/congenital , Recovery of Function/physiology , Retina/physiology , Vision Disorders/physiopathology , Visual Cortex/physiology , Adolescent , Adult , Animals , Cataract Extraction , Child , Electroencephalography , Female , Humans , Male , Visual Acuity/physiology , Visual Fields/physiology , Visual Pathways/physiology , Young Adult
9.
Neuroimage ; 167: 284-296, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29175496

ABSTRACT

The present study tested whether or not functional adaptations following congenital blindness are maintained in humans after sight-restoration and whether they interfere with visual recovery. In permanently congenital blind individuals both intramodal plasticity (e.g. changes in auditory cortex) as well as crossmodal plasticity (e.g. an activation of visual cortex by auditory stimuli) have been observed. Both phenomena were hypothesized to contribute to improved auditory functions. For example, it has been shown that early permanently blind individuals outperform sighted controls in auditory motion processing and that auditory motion stimuli elicit activity in typical visual motion areas. Yet it is unknown what happens to these behavioral adaptations and cortical reorganizations when sight is restored, that is, whether compensatory auditory changes are lost and to which degree visual motion processing is reinstalled. Here we employed a combined behavioral-electrophysiological approach in a group of sight-recovery individuals with a history of a transient phase of congenital blindness lasting for several months to several years. They, as well as two control groups, one with visual impairments, one normally sighted, were tested in a visual and an auditory motion discrimination experiment. Task difficulty was manipulated by varying the visual motion coherence and the signal to noise ratio, respectively. The congenital cataract-reversal individuals showed lower performance in the visual global motion task than both control groups. At the same time, they outperformed both control groups in auditory motion processing suggesting that at least some compensatory behavioral adaptation as a consequence of a complete blindness from birth was maintained. Alpha oscillatory activity during the visual task was significantly lower in congenital cataract reversal individuals and they did not show ERPs modulated by visual motion coherence as observed in both control groups. In contrast, beta oscillatory activity in the auditory task, which varied as a function of SNR in all groups, was overall enhanced in congenital cataract reversal individuals. These results suggest that intramodal plasticity elicited by a transient phase of blindness was maintained and might mediate the prevailing auditory processing advantages in congenital cataract reversal individuals. By contrast, auditory and visual motion processing do not seem to compete for the same neural resources. We speculate that incomplete visual recovery is due to impaired neural network turning which seems to depend on early visual input. The present results demonstrate a privilege of the first arriving input for shaping neural circuits mediating both auditory and visual functions.


Subject(s)
Auditory Perception/physiology , Beta Rhythm/physiology , Cataract/physiopathology , Cerebral Cortex/physiopathology , Evoked Potentials/physiology , Motion Perception/physiology , Vision Disorders/physiopathology , Adolescent , Adult , Alpha Rhythm/physiology , Blindness/congenital , Blindness/physiopathology , Blindness/surgery , Cataract/congenital , Cataract Extraction , Child , Female , Humans , Male , Vision Disorders/congenital , Vision Disorders/surgery , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...