Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1188347, 2023.
Article in English | MEDLINE | ID: mdl-37284727

ABSTRACT

During meiosis, the chromosome axes and synaptonemal complex mediate chromosome pairing and homologous recombination to maintain genomic stability and accurate chromosome segregation. In plants, ASYNAPSIS 1 (ASY1) is a key component of the chromosome axis that promotes inter-homolog recombination, synapsis and crossover formation. Here, the function of ASY1 has been cytologically characterized in a series of hypomorphic wheat mutants. In tetraploid wheat, asy1 hypomorphic mutants experience a reduction in chiasmata (crossovers) in a dosage-specific manner, resulting in failure to maintain crossover (CO) assurance. In mutants with only one functional copy of ASY1, distal chiasmata are maintained at the expense of proximal and interstitial chiasmata, indicating that ASY1 is required to promote chiasma formation away from the chromosome ends. Meiotic prophase I progression is delayed in asy1 hypomorphic mutants and is arrested in asy1 null mutants. In both tetraploid and hexaploid wheat, single asy1 mutants exhibit a high degree of ectopic recombination between multiple chromosomes at metaphase I. To explore the nature of the ectopic recombination, Triticum turgidum asy1b-2 was crossed with wheat-wild relative Aegilops variabilis. Homoeologous chiasmata increased 3.75-fold in Ttasy1b-2/Ae. variabilis compared to wild type/Ae. variabilis, indicating that ASY1 suppresses chiasma formation between divergent, but related chromosomes. These data suggest that ASY1 promotes recombination along the chromosome arms of homologous chromosomes whilst suppressing recombination between non-homologous chromosomes. Therefore, asy1 mutants could be utilized to increase recombination between wheat wild relatives and elite varieties for expediting introgression of important agronomic traits.

2.
Front Plant Sci ; 14: 1342976, 2023.
Article in English | MEDLINE | ID: mdl-38348162

ABSTRACT

Introduction: Meiotic recombination (or crossover, CO) is essential for gamete fertility as well as for alleles and genes reshuffling that is at the heart of plant breeding. However, CO remains a limited event, which strongly hampers the rapid production of original and improved cultivars. RecQ4 is a gene encoding a helicase protein that, when mutated, contributes to improve recombination rate in all species where it has been evaluated so far. Methods: In this study, we developed wheat (Triticum aestivum L.) triple mutant (TM) for the three homoeologous copies of TaRecQ4 as well as mutants for two copies and heterozygous for the last one (Htz-A, Htz-B, Htz-D). Results: Phenotypic observation revealed a significant reduction of fertility and pollen viability in TM and Htz-B plants compared to wild type plants suggesting major defects during meiosis. Cytogenetic analyses of these plants showed that complete absence of TaRecQ4 as observed in TM plants, leads to chromosome fragmentation during the pachytene stage, resulting in problems in the segregation of chromosomes during meiosis. Htz-A and Htz-D mutants had an almost normal meiotic progression indicating that both TaRecQ4-A and TaRecQ4-D copies are functional and that there is no dosage effect for TaRecQ4 in bread wheat. On the contrary, the TaRecQ4-B copy seems knocked-out, probably because of a SNP leading to a Threonine>Alanine change at position 539 (T539A) of the protein, that occurs in the crucial helicase ATP bind/DEAD/ResIII domain which unwinds nucleic acids. Occurrence of numerous multivalents in TM plants suggests that TaRecQ4 could also play a role in the control of homoeologous recombination. Discussion: These findings provide a foundation for further molecular investigations into wheat meiosis regulation to fully understand the underlying mechanisms of how TaRecQ4 affects chiasma formation, as well as to identify ways to mitigate these defects and enhance both homologous and homoeologous recombination efficiency in wheat.

4.
Biology (Basel) ; 11(10)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36290279

ABSTRACT

Improving the production of all crops is crucial to meeting the challenge of the growing needs related to the simultaneous increase in the world population and demands from farmers and end-users [...].

5.
Plants (Basel) ; 11(17)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36079661

ABSTRACT

Understanding meiotic crossover (CO) variation in crops like bread wheat (Triticum aestivum L.) is necessary as COs are essential to create new, original and powerful combinations of genes for traits of agronomical interest. We cytogenetically characterized a set of wheat aneuploid lines missing part or all of chromosome 3B to identify the most influential regions for chiasma formation located on this chromosome. We showed that deletion of the short arm did not change the total number of chiasmata genome-wide, whereas this latter was reduced by ~35% while deleting the long arm. Contrary to what was hypothesized in a previous study, deletion of the long arm does not disturb the initiation of the synaptonemal complex (SC) in early meiotic stages. However, progression of the SC is abnormal, and we never observed its completion when the long arm is deleted. By studying six different deletion lines (missing different parts of the long arm), we revealed that at least two genes located in both the proximal (C-3BL2-0.22) and distal (3BL7-0.63-1.00) deletion bins are involved in the control of chiasmata, each deletion reducing the number of chiasmata by ~15%. We combined sequence analyses of deletion bins with RNA-Seq data derived from meiotic tissues and identified a set of genes for which at least the homoeologous copy on chromosome 3B is expressed and which are involved in DNA processing. Among these genes, eight (CAP-E1/E2, DUO1, MLH1, MPK4, MUS81, RTEL1, SYN4, ZIP4) are known to be involved in the recombination pathway.

6.
Methods Mol Biol ; 2484: 183-199, 2022.
Article in English | MEDLINE | ID: mdl-35461453

ABSTRACT

Positional cloning in bread wheat (Triticum aestivum L.) remains a daunting task because of its large genome, high density of repeats, low recombination rate especially in pericentromeric regions and its allopolyploidy. One way to face this challenge is to decrease the size of the interval bearing the gene of interest both genetically and physically, in order to reduce significantly the number of potential candidate genes. In this chapter, we describe a technical approach to produce chromosome-specific deletion lines to locate precisely genes of interest onto wheat chromosomes, a step forward to their cloning.


Subject(s)
Bread , Triticum , Chromosomes , Triticum/genetics
7.
Plant Biotechnol J ; 20(5): 812-832, 2022 05.
Article in English | MEDLINE | ID: mdl-35114064

ABSTRACT

In the recent years, the agricultural world has been progressing towards integrated crop protection, in the context of sustainable and reasoned agriculture to improve food security and quality, and to preserve the environment through reduced uses of water, pesticides, fungicides or fertilisers. For this purpose, one possible issue is to cross-elite varieties widely used in fields for crop productions with exotic or wild genetic resources in order to introduce new diversity for genes or alleles of agronomical interest to accelerate the development of new improved cultivars. However, crossing ability (or crossability) often depends on genetic background of the recipient varieties or of the donor, which hampers a larger use of wild resources in breeding programmes of many crops. In this review, we tried to provide a comprehensive summary of genetic factors controlling crossing ability between Triticeae species with a special focus on the crossability between wheat (Triticum aestivum L.) and rye (Secale cereale), which lead to the creation of Triticale (x Triticosecale Wittm.). We also discussed potential applications of newly identified genes or markers associated with crossability for accelerating wheat and Triticale improvement by application of modern genomics technologies in breeding programmes.


Subject(s)
Plant Breeding , Triticum , Agriculture , Crops, Agricultural/genetics , Crosses, Genetic , Secale/genetics , Triticum/genetics
8.
Biology (Basel) ; 11(1)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35053148

ABSTRACT

There is currently a strong societal demand for sustainability, quality, and safety in bread wheat production. To address these challenges, new and innovative knowledge, resources, tools, and methods to facilitate breeding are needed. This starts with the development of high throughput genomic tools including single nucleotide polymorphism (SNP) arrays, high density molecular marker maps, and full genome sequences. Such powerful tools are essential to perform genome-wide association studies (GWAS), to implement genomic and phenomic selection, and to characterize the worldwide diversity. This is also useful to breeders to broaden the genetic basis of elite varieties through the introduction of novel sources of genetic diversity. Improvement in varieties particularly relies on the detection of genomic regions involved in agronomical traits including tolerance to biotic (diseases and pests) and abiotic (drought, nutrient deficiency, high temperature) stresses. When enough resolution is achieved, this can result in the identification of candidate genes that could further be characterized to identify relevant alleles. Breeding must also now be approached through in silico modeling to simulate plant development, investigate genotype × environment interactions, and introduce marker-trait linkage information in the models to better implement genomic selection. Breeders must be aware of new developments and the information must be made available to the world wheat community to develop new high-yielding varieties that can meet the challenge of higher wheat production in a sustainable and fluctuating agricultural context. In this review, we compiled all knowledge and tools produced during the BREEDWHEAT project to show how they may contribute to face this challenge in the coming years.

9.
Biology (Basel) ; 10(5)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068451

ABSTRACT

There is an urgent need to increase and improve the production of most agronomic species to meet the current food security challenge [...].

10.
Genome Biol Evol ; 13(8)2021 08 03.
Article in English | MEDLINE | ID: mdl-34185074

ABSTRACT

Reciprocal exchanges of DNA (crossovers) that occur during meiosis are mandatory to ensure the production of fertile gametes in sexually reproducing species. They also contribute to shuffle parental alleles into new combinations thereby fueling genetic variation and evolution. However, due to biological constraints, the recombination landscape is highly heterogeneous along the genome which limits the range of allelic combinations and the adaptability of populations. An approach to better understand the constraints on the recombination process is to study how it evolved in the past. In this work, we tackled this question by constructing recombination profiles in four diverging bread wheat (Triticum aestivum L.) populations established from 371 landraces genotyped at 200,062 SNPs. We used linkage disequilibrium (LD) patterns to estimate in each population the past distribution of recombination along the genome and characterize its fine-scale heterogeneity. At the megabase scale, recombination rates derived from LD patterns were consistent with family-based estimates obtained from a population of 406 recombinant inbred lines. Among the four populations, recombination landscapes were positively correlated between each other and shared a statistically significant proportion of highly recombinant intervals. However, this comparison also highlighted that the similarity in recombination landscapes between populations was significantly decreasing with their genetic differentiation in most regions of the genome. This observation was found to be robust to SNPs ascertainment and demography and suggests a relatively rapid evolution of factors determining the fine-scale localization of recombination in bread wheat.


Subject(s)
Bread , Triticum , Chromosome Mapping , Linkage Disequilibrium , Recombination, Genetic , Triticum/genetics
11.
Nat Commun ; 12(1): 803, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33547285

ABSTRACT

Meiotic recombination is a critical process for plant breeding, as it creates novel allele combinations that can be exploited for crop improvement. In wheat, a complex allohexaploid that has a diploid-like behaviour, meiotic recombination between homoeologous or alien chromosomes is suppressed through the action of several loci. Here, we report positional cloning of Pairing homoeologous 2 (Ph2) and functional validation of the wheat DNA mismatch repair protein MSH7-3D as a key inhibitor of homoeologous recombination, thus solving a half-century-old question. Similar to ph2 mutant phenotype, we show that mutating MSH7-3D induces a substantial increase in homoeologous recombination (up to 5.5 fold) in wheat-wild relative hybrids, which is also associated with a reduction in homologous recombination. These data reveal a role for MSH7-3D in meiotic stabilisation of allopolyploidy and provides an opportunity to improve wheat's genetic diversity through alien gene introgression, a major bottleneck facing crop improvement.


Subject(s)
DNA, Plant/genetics , Gene Expression Regulation, Plant , Homologous Recombination , Plant Breeding/methods , Plant Proteins/genetics , Triticum/genetics , Alleles , Chimera , Chromosomes, Plant/chemistry , DNA Mismatch Repair , DNA, Plant/metabolism , Meiosis , Mutation , Physical Chromosome Mapping , Plant Proteins/metabolism , Ploidies , Secale/genetics , Secale/metabolism , Triticum/metabolism
13.
Genes (Basel) ; 13(1)2021 12 31.
Article in English | MEDLINE | ID: mdl-35052440

ABSTRACT

Quantitative resistance is considered more durable than qualitative resistance as it does not involve major resistance genes that can be easily overcome by pathogen populations, but rather a combination of genes with a lower individual effect. This durability means that quantitative resistance could be an interesting tool for breeding crops that would not systematically require phytosanitary products. Quantitative resistance has yet to reveal all of its intricacies. Here, we delve into the case of the wheat/Septoria tritici blotch (STB) pathosystem. Using a population resulting from a cross between French cultivar Renan, generally resistant to STB, and Chinese Spring, a cultivar susceptible to the disease, we built an ultra-dense genetic map that carries 148,820 single nucleotide polymorphism (SNP) markers. Phenotyping the interaction was done with two different Zymoseptoria tritici strains with contrasted pathogenicities on Renan. A linkage analysis led to the detection of three quantitative trait loci (QTL) related to resistance in Renan. These QTL, on chromosomes 7B, 1D, and 5D, present with an interesting diversity as that on 7B was detected with both fungal strains, while those on 1D and 5D were strain-specific. The resistance on 7B was located in the region of Stb8 and the resistance on 1D colocalized with Stb19. However, the resistance on 5D was new, so further designated Stb20q. Several wall-associated kinases (WAK), nucleotide-binding and leucine-rich repeats (NB-LRR) type, and kinase domain carrying genes were present in the QTL regions, and some of them were expressed during the infection. These results advocate for a role of Stb genes in quantitative resistance and for resistance in the wheat/STB pathosystem being as a whole quantitative and polygenic.


Subject(s)
Ascomycota/physiology , Disease Resistance/genetics , Gene Expression Regulation, Plant , Plant Diseases/immunology , Plant Proteins/metabolism , Quantitative Trait Loci , Triticum/immunology , Ascomycota/classification , Chromosome Mapping , Chromosomes, Plant/genetics , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/microbiology , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Species Specificity , Transcriptome , Triticum/genetics , Triticum/microbiology
15.
Front Plant Sci ; 11: 1056, 2020.
Article in English | MEDLINE | ID: mdl-32733528

ABSTRACT

Polyploids are species in which three or more sets of chromosomes coexist. Polyploidy frequently occurs in plants and plays a major role in their evolution. Based on their origin, polyploid species can be divided into two groups: autopolyploids and allopolyploids. The autopolyploids arise by multiplication of the chromosome sets from a single species, whereas allopolyploids emerge from the hybridization between distinct species followed or preceded by whole genome duplication, leading to the combination of divergent genomes. Having a polyploid constitution offers some fitness advantages, which could become evolutionarily successful. Nevertheless, polyploid species must develop mechanism(s) that control proper segregation of genetic material during meiosis, and hence, genome stability. Otherwise, the coexistence of more than two copies of the same or similar chromosome sets may lead to multivalent formation during the first meiotic division and subsequent production of aneuploid gametes. In this review, we aim to discuss the pathways leading to the formation of polyploids, the occurrence of polyploidy in the grass family (Poaceae), and mechanisms controlling chromosome associations during meiosis, with special emphasis on wheat.

16.
Plant J ; 104(1): 30-43, 2020 09.
Article in English | MEDLINE | ID: mdl-32603485

ABSTRACT

Meiotic recombination is initiated by formation of DNA double-strand breaks (DSBs). This involves a protein complex that includes in plants the two similar proteins, SPO11-1 and SPO11-2. We analysed the sequences of SPO11-2 in hexaploid bread wheat (Triticum aestivum), as well as in its diploid and tetraploid progenitors. We investigated its role during meiosis using single, double and triple mutants. The three homoeologous SPO11-2 copies of hexaploid wheat exhibit high nucleotide and amino acid similarities with those of the diploids, tetraploids and Arabidopsis. Interestingly, however, two nucleotides deleted in exon-2 of the A copy lead to a premature stop codon and suggest that it encodes a non-functional protein. Remarkably, the mutation was absent from the diploid A-relative Triticum urartu, but present in the tetraploid Triticum dicoccoides and in different wheat cultivars indicating that the mutation occurred after the first polyploidy event and has since been conserved. We further show that triple mutants with all three copies (A, B, D) inactivated are sterile. Cytological analyses of these mutants show synapsis defects, accompanied by severe reductions in bivalent formation and numbers of DMC1 foci, thus confirming the essential role of TaSPO11-2 in meiotic recombination in wheat. In accordance with its 2-nucleotide deletion in exon-2, double mutants for which only the A copy remained are also sterile. Notwithstanding, some DMC1 foci remain visible in this mutant, suggesting a residual activity of the A copy, albeit not sufficient to restore fertility.


Subject(s)
DNA Breaks, Double-Stranded , Meiosis , Plant Proteins/physiology , Triticum/metabolism , Arabidopsis/genetics , Conserved Sequence/genetics , DNA Topoisomerases/genetics , DNA Topoisomerases/metabolism , Diploidy , Genome, Plant/genetics , Meiosis/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Recombination, Genetic/genetics , Sequence Alignment , Sequence Analysis, DNA , Tetraploidy , Triticum/genetics , Triticum/physiology
17.
Genomics Inform ; 18(2): e14, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32634868

ABSTRACT

Phenotyping is a major issue for wheat agriculture to meet the challenges of adaptation of wheat varieties to climate change and chemical input reduction in crop. The need to improve the reuse of observations and experimental data has led to the creation of reference ontologies to standardize descriptions of phenotypes and to facilitate their comparison. The scientific literature is largely under-exploited, although extremely rich in phenotype descriptions associated with cultivars and genetic information. In this paper we propose the Wheat Trait Ontology (WTO) that is suitable for the extraction and management of scientific information from scientific papers, and its combination with data from genomic and experimental databases. We describe the principles of WTO construction and show examples of WTO use for the extraction and management of phenotype descriptions obtained from scientific documents.

18.
Plant J ; 103(6): 2052-2068, 2020 09.
Article in English | MEDLINE | ID: mdl-32559326

ABSTRACT

The manipulation of meiotic recombination in crops is essential to develop new plant varieties rapidly, helping to produce more cultivars in a sustainable manner. One option is to control the formation and repair of the meiosis-specific DNA double-strand breaks (DSBs) that initiate recombination between the homologous chromosomes and ultimately lead to crossovers. These DSBs are introduced by the evolutionarily conserved topoisomerase-like protein SPO11 and associated proteins. Here, we characterized the homoeologous copies of the SPO11-1 protein in hexaploid bread wheat (Triticum aestivum). The genome contains three SPO11-1 gene copies that exhibit 93-95% identity at the nucleotide level, and clearly the A and D copies originated from the diploid ancestors Triticum urartu and Aegilops tauschii, respectively. Furthermore, phylogenetic analysis of 105 plant genomes revealed a clear partitioning between monocots and dicots, with the seven main motifs being almost fully conserved, even between clades. The functional similarity of the proteins among monocots was confirmed through complementation analysis of the Oryza sativa (rice) spo11-1 mutant by the wheat TaSPO11-1-5D coding sequence. Also, remarkably, although the wheat and Arabidopsis SPO11-1 proteins share only 55% identity and the partner proteins also differ, the TaSPO11-1-5D cDNA significantly restored the fertility of the Arabidopsis spo11-1 mutant, indicating a robust functional conservation of the SPO11-1 protein activity across distant plants. These successful heterologous complementation assays, using both Arabidopsis and rice hosts, are good surrogates to validate the functionality of candidate genes and cDNA, as well as variant constructs, when the transformation and mutant production in wheat is much longer and more tedious.


Subject(s)
Conserved Sequence/genetics , Gene Transfer, Horizontal/genetics , Genes, Plant/genetics , Plant Proteins/genetics , Triticum/genetics , Aegilops/genetics , Arabidopsis Proteins/genetics , Evolution, Molecular , Meiosis/genetics , Oryza/genetics , Sequence Alignment
19.
Theor Appl Genet ; 133(3): 751-770, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31907562

ABSTRACT

KEY MESSAGE: A set of eight SNP markers was developed to facilitate the early selection of HMW-GS alleles in breeding programmes. In bread wheat (Triticum aestivum), the high molecular weight glutenin subunits (HMW-GSs) are the most important determinants of technological quality. Known to be very diverse, HMW-GSs are encoded by the tightly linked genes Glu-1-1 and Glu-1-2. Alleles that improve the quality of dough have been identified. Up to now, sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) of grain proteins is the most widely used for their identification. To facilitate the early selection of HMW-GS alleles in breeding programmes, we developed DNA-based molecular markers. For each accession of a core collection (n = 364 lines) representative of worldwide bread wheat diversity, HMW-GSs were characterized by both genotyping and SDS-PAGE. Based on electrophoresis, we observed at least 8, 22 and 9 different alleles at the Glu-A1, Glu-B1 and Glu-D1 loci, respectively, including new variants. We designed a set of 17 single-nucleotide polymorphism (SNP) markers that were representative of the most frequent SDS-PAGE alleles at each locus. At Glu-A1 and Glu-D1, two and three marker-based haplotypes, respectively, captured the diversity of the SDS-PAGE alleles rather well. Discrepancies were found mainly for the Glu-B1 locus. However, statistical tests revealed that two markers at each Glu-B1 gene and their corresponding haplotypes were more significantly associated with the rheological properties of the dough than were the relevant SDS-PAGE alleles. To conclude, this study demonstrates that the SNP markers developed provide additional information on HMW-GS diversity. Two markers at Glu-A1, four at Glu-B1 and two at Glu-D1 constitute a useful toolbox for breeding wheat to improve end-use value.


Subject(s)
Glutens/genetics , Glutens/metabolism , Plant Breeding/methods , Triticum/genetics , Alleles , Electrophoresis, Polyacrylamide Gel , Genes, Plant , Genetic Markers , Haplotypes , Molecular Weight , Polymorphism, Single Nucleotide , Triticum/metabolism
20.
Methods Mol Biol ; 2061: 207-215, 2020.
Article in English | MEDLINE | ID: mdl-31583662

ABSTRACT

Wheat and barley have large genomes of 15 Gb and 5.1 Gb, respectively, which is much larger than the human genome (3.3 Gb). The release of their respective genomes has been a tremendous advance the understanding of the genome organization and the ability for deeper functional analysis in particular meiosis. Meiosis is the cell division required during sexual reproduction. One major event of meiosis is called recombination, or the formation of crossing over, a tight link between homologous chromosomes, ensuring gene exchange and faithful chromosome segregation. Recombination is a major driver of genetic diversity but in these large genome crops, the vast majority of these events is constrained at the end of their chromosomes. It is estimated that in barley, about 30% of the genes are located within the poor recombining centromeric regions, making important traits, such as resistance to pest and disease for example, difficult to access. Increasing recombination in these crops has the potential to speed up breeding program and requires a good understand of the meiotic mechanism. However, most research on recombination in plant has been carried in Arabidopsis thaliana which despite many of the advantages it brings for plant research, has a small genome and more spread out of recombination compare to barley or wheat. Advance in microscopy and cytological procedures have emerged in the last few years, allowing to follow meiotic events in these crops. This protocol provides the steps required for cytological preparation of barley and wheat pollen mother cells for light microscopy, highlighting some of the differences between the two cereals.


Subject(s)
Chromosome Pairing , Hordeum/genetics , Meiosis , Microscopy , Synaptonemal Complex , Triticum/genetics , Fluorescent Antibody Technique/methods , Imaging, Three-Dimensional , Microscopy/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...